
Analysing Dependency Dynamics in Web Data

Felix Bießmann
Department Machine Learning

TU Berlin
fbiessma@cs.tu-berlin.de

Andreas Harth
Institute AIFB

Karlsruhe Institute of Technology
harth@kit.edu

Abstract

Modern web sites provide easy access to large amounts of
data via open application programming interfaces. Users in-
teracting with these sites constantly change the underlying
data sets, which can be represented in graph-structured form.
Nodes in these dynamic graph structures exhibit dependen-
cies over time (for example, one node changes before other
nodes change in the same way). Analysing these dependen-
cies is crucial for understanding and predicting the dynamics
inherent to temporally changing graph structures on the web.
When the graphs become large however, it is not feasible to
take into account all properties of the graph and in general
it is unclear how to choose the appropriate features. More-
over, comparing two nodes becomes difficult, if the nodes do
not share exactly the same features. In this work we propose
an algorithm that automatically learns the features that gov-
ern temporal dependencies between nodes in large dynamic
graph structures. We present preliminary results of applying
the algorithm to data collected from the web, discuss poten-
tial extensions of the framework and anticipate how a major
problem in machine learning, sparse data, could be tackled
by leveraging Linked Data.

Introduction
Modern web sites hosting user-generated content typically
provide access to their underlying data bases via spe-
cialised application programming interfaces (APIs) or a set
of Semantic Web standards. Increasingly web sites fol-
low Linked Data principles for publishing their data (e.g.
http://dbtune.org/). Data published as Linked Data follows
a few basic rules to facilitate publishing, sharing, and inter-
linking data on the web1. Much of the publicly available
data (e.g. statistical information, user preference data, so-
cial networks) not yet adhering to Linked Data standards is
in principle applicable for analysis with machine learning
methods.

Traditional machine learning research has focussed on
corpora from dedicated repositories such as UCINet. A re-
cent trend is towards so-called data-driven approaches with
a focus on improving learning methods by scaling up the
amount of data which is passed as input to algorithms. The

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.w3.org/DesignIssues/LinkedData

appearance of real-world and up-to-date data sets published
by online sources which are interlinked has the potential of
replacing dedicated corpora and providing insights into phe-
nomena which were not observable before due to a lack of
available data, or the high effort involved in collecting data
or integrating disparate data sets.

One property of real-world data sets from the web is that
the graph structure is not constant over time, the nodes and
edges change over time. If there are common sources of in-
formation that give rise to similar changes at different nodes
in the graph or in different subgraphs, this will lead to tem-
poral dependencies between these nodes or subgraphs. Un-
derstanding these dependency dynamics of rapidly evolving
graph structures on the web can be helpful for understanding
common trends or predicting future ones.

We propose a framework for applying an extension of a
standard statistical learning technique, Canonical Correla-
tion Analysis (CCA) (Hotelling 1936), to data from the web
to uncover temporal dependencies therein. The questions
that can be tackled using this framework include:

• Which features describe best the dependencies? If two
websites publish similar content at the same time, this will
be reflected in the temporal correlation of certain features
such as links to other websites from this website. If the
websites are large, it is difficult to find the right features,
as the number of feature comparisons scales quadrati-
cally with the number of features. Our approach auto-
matically learns the features that exhibit temporal corre-
lations, e.g. the links shared by the two websites. As
the algorithm is based on kernels (Müller et al. 2001;
Schölkopf and Smola 2002; Shawe-Taylor and Cristianini
2004), it is applicable to high-dimensional feature spaces
and its computational complexity scales with the number
of temporal samples, not the number of features.

• How do the dependencies change over time? If one web-
site has published the same content before another web-
site does so, the latter is correlated with the former. This
correlation is not instantaneous but has a temporal delay.
Thus at time lag zero (i.e. simultaneous time samples of
the two websites), the two websites might not be corre-
lated. When taking into account the temporal delay be-
tween the two websites however they are correlated. The
canonical correlogram (Bießmann et al. 2009) used in



this work reflects these dependency dynamics between the
two graph nodes. If the time delay between two websites
is always the same, this will be reflected in a pronounced
peak in the correlogram at the correct temporal delay be-
tween the websites. If one website is publishing the same
information simply slower than the other (with variable
delay), this will merely be reflected in an asymmetry of
the correlogram, i.e. higher correlations for positive time
lags τ > 0.

• Which features account best for this change? The algo-
rithm presented below learns the features that give rise to
the dependency changes between nodes in a graph, even
if the dimensionality of the feature space is considerably
larger than the number of time samples. If two web-
sites publish only some information, i.e. certain features,
with a specific temporal delay and other information at
the same time this will be reflected in the analysis results.

A tenet of Linked Data is knowledge representation,
whereby data is encoded into a graph structure and rich rep-
resentation mechanisms allowing for drawing logical infer-
ences. In contrast, machine learning algorithms typically
operate on vector or matrix representations of data and most
methods that preserve the graph structure, such as graph or
string kernels (Shawe-Taylor and Cristianini 2004), do not
take into account the temporal dimension. In this work we
regard the data as a multivariate time series of features ex-
tracted from a graph. This enables us to analyse the tem-
poral dynamics of the graph and the temporal dependencies
therein.

In the remainder of the paper we start by introducing an
example, followed by an overview of our approach. We con-
tinue by presenting experimental results, discuss the chal-
lenges in applying machine learning algorithms to Linked
Data, and conclude with a summary and outlook.

Example
For the example we use data from http://last.fm/, a social
music platform. Users of the service can listen to mu-
sic, connect to other users and receive recommendations
based on the collective listener behaviour of the site’s users.
last.fm contains a database of tracks, albums, and artists,
which may be connected to entries in external data sources.
All data on last.fm, including the listening behaviour of
users, is made publicly available via an API2.

Consider a user called JoanLandor for which data is be-
ing made available. Data about JoanLandor consists of at-
tributes such as name, her social network (i.e. the peo-
ple she knows), group membership, and a set of favourite
(i.e. often listened to) tracks, albums, and artists. Friends
in turn have data attached similar to JoanLandor’s. Data
about any object in the user subgraph can contain links to
external information sources such as http://musicbrainz.org/,

2There exists an RDF representation of last.fm data at
http://dbtune.org/last-fm/, however, that version does not include
records of weekly playlists on which our algorithm operates. We
hence use an idealised graph-structured representation of the data
attainable through the last.fm API for ease of exposition.

http://www.bbc.co.uk/ or http://www.wikipedia.org/, how-
ever, not all artists, albums or tracks are connected to exter-
nal information sources. In addition to the static data about a
user, there exist also weekly artist charts per user as depicted
in figure 1, which provides the temporal dimension as input
to the machine learning algorithm.

Methods
Overview
In this section we outline data collection, preprocessing and
analysis steps performed. The process can be divided into
the following parts:

• Data Collection: Crawl graph time series

• Feature Extraction: Vectorise graph features

• Dependency Estimation: Compute Temporal Kernel CCA

Data Collection
We collected user graphs from publicly available data on the
web. As outlined in the example above, we collected for
each of the U user nodes nu, u = [1,2, . . . ,U ] in a social net-
work a subgraph expanding from that node. For each time
sample t ∈ [0,1,2, . . . ,L], where L is the total number of time
samples, we stored the corresponding subgraph in a dynamic
graph structure gu(t). An example of one time sample is
shown in fig. 1. The data set specific details are explained
in the experiments section. The temporal resolution of the
graph time series is upper-bounded by the website under in-
vestigation. In the case of http://www.last.fm/ we acquired
one snapshot of a user graph per week. For websites chang-
ing at a faster pace, such as http://twitter.com/ or news feeds,
the temporal resolution could be higher.

Feature Extraction
After having downloaded data for every point in time t we
extract features from the dynamic graph gu(t). Let us con-
sider a node nu from which we collect M features. The mul-
tivariate variable extracted from nu is denoted x ∈ RM . Ev-
ery feature represents one dimension in the vector space of
our multivariate time series. The features considered here
are simply histograms of graph edges from a user graph to
other nodes. This histogram is similar to the term frequency-
inverse document frequency (tf-idf) measure in text mining
(Salton and McGill 1986), except that we normalise along
the temporal dimension (see below). Feature extraction is
done for every time sample t ∈ [0,1,2, ...,L]. The resulting
data matrix X = [x1,x2,x3, . . . ,xL]∈RM×L contains the sam-
ples xt in chronological order as column vectors.

In the example above the first feature could be the number
of a certain genre label associated with the top ten tracks of
a users weekly chart-list. For instance if the first label is
Disco and a user has three songs in his first weekly chart list
labelled with the tag Disco, then the matrix entry X(1,1) is 3.
If in the following week one more disco song is in the chart
list, the corresponding value in the second week X(1,2) is 4.



18-Nov-2007

25-Nov-2007lfm:user/JoanLandor#i _:b1
#weeklychart

#from

#to

_:b2

#list

rdf:Seq
rdf:type

New Orderrdf:_1

Tiger Lou

rdf:_2

Aereogramme

rdf:_3

Figure 1: Example of one time sample of a dynamic graph gu(t), representing the weekly artist charts for the user JoanLandor
with the top-three artists.

Temporal kernel CCA (tkCCA)
In this work we used temporal kernel canonical correlation
analysis (tkCCA) (Bießmann et al. 2009) in order to analyse
the dependencies between two nodes nx, ny in a graph. For
the sake of a simpler notation we consider only centered and
normalised time series, i.e. ∑xi = 0, ∑x2

i = 1. Given two
multivariate time series x ∈ RM and y ∈ RN , tkCCA finds
a convolution wx(τ) and a projection wy that maximise the
canonical correlation between the two time series:

max
wx(τ),wy

Corr
(

∑
τ

wx(τ)>Xτ ,w>y Y
)

. (1)

Canonical here means that the correlation is invariant under
affine transformations of the data. The coefficients of wx(τ)
and wy indicate which feature of nx is coupled to which fea-
ture of ny and importantly wx(τ) also reveals the relative
time shift of that coupling between the two nodes.

For an illustrative example let us consider wx(τ = −5)
has a high coefficient in its first feature and also wy has a
high value in its first feature dimension. For feature selec-
tion that means node nx and ny show a strong correlation in
their first feature, hence this feature might be important. As
for the temporal dynamics of the dependency this means the
correlation between nx and ny is maximal if the data of ny
is shifted 5 samples backwards in time with respect to nx.
Referring back to our working example the interpretation
would be: user x listened preferentially to the genre Disco
5 weeks before user y did so, probably because there was
some band associated with this genre that became popular
and user x discovered that band before user y did so3.

Equation 1 can be efficiently solved by embedding one
time series into time shifted copies of itself:

X̃ =


Xτ1
Xτ2

...
XτT

 ∈RMT×L, (2)

where Xτi denotes time shifted copies of the data in X and
τi = [−T,−T +1, ...,0, ...,T−1,T ] denotes the relative time

3If the two users just generally like a certain feature, this would
not lead to temporal co-variation between the users and thus cannot
account for the described phenomenon

shift with respect to the data in Y and T is the maximal time
lag. The data matrix X̃ now contains time shifted (with re-
spect to the data in Y ) copies of X as additional feature di-
mensions. The linear kernel matrices KX̃ , KY are given as
the inner product of the data matrices X̃ , Y :

KX̃ = X̃>X̃ ,

KY = Y>Y. (3)

We can then optimise equation 1 by solving the generalised
eigenvalue problem:[

0 KX̃ KY
KY KX̃ 0

][
α

β

]
= ρ

[
K2

X̃ 0
0 K2

Y

][
α

β

]
. (4)

The filters wx̃, wy are given as a linear expansion of the data
points (Akaho 2001; Fukumizu, Bach, and Gretton 2007):

wx̃ = X̃α

wy = Y β . (5)

As the coefficients of wx̃ are simply the coefficients for all
time lags stacked upon one another, the convolutive filter
wx(τ) can be easily recovered by reshaping wx̃:

wx̃ =


wx(τ1)
wx(τ2)

...
wx(τT )

 . (6)

From the convolutive filter wx(τ) we can compute a canoni-
cal correlogram between nx and ny, similar to a normal cross
correlogram, but for high dimensional data: The canoni-
cal correlogram is simply the cross-correlation function be-
tween the canonical components (i.e. the data sets projected
onto the filters wx(τ) and wy):

ρ(τ) = Corr
(

wx(τ)>Xτ ,w>y Y
)

=
wx(τ)>XτY>wy

wx(τ)>Xτ X>τ wx(τ) ·w>y YY>wy

=
α>Kτ KY β

α>K2
τ α ·β>K2

Y β
(7)

where Kτ = X>τ Xτ denotes the kernel computed from the
time-shifted data matrices Xτ . The canonical correlogram



Time lag (weeks)

T
op

 T
ag

s

 

 

−10 −5 0 5 10

punk cabaret
crust punk

hardcore punk
punk blues

emo

−10 −5 0 5 10

0.2

0.3

0.4

0.5

Time lag (weeks)

C
or

re
la

tio
n

5 10 15 20

Time lag (weeks)

T
op

 T
ag

s

 

 

−10 −5 0 5 10

deutscher hip h
german hip hop
german reggae

minimal synth
minimalist

−10 −5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

Time lag (weeks)

C
or

re
la

tio
n

8 10 12 14 16 18

Figure 2: Temporal changes in canonical correlation between single users and all other users; plotted are feature weights (top
row) and canonical correlogram (bottom, median in red, grey area indicates 25th and 75th percentile) for different relative time
shifts between single user and all users; Trend setting (left column): This users has listened to the respectively tagged artists
before everybody else did so, as indicated by the high correlations for negative time lags; the user changed his preferences when
others started listening to these categories, as shown by the small correlations for positive time lags; Trend following (right
column): This user has avoided the respective categories until the masses listened to them and then joined the common listening
preference;

ρ(τ) shows how the canonical correlation between the two
nodes nx, ny change dependent on the relative time lag be-
tween the two nodes. As in our application the number of
features is larger than the number of samples, regularisation
techniques have to be used to constrain the complexity of
wx(τ) and wy. Optimisation of the regularisation parameters
was done as in (Bießmann et al. 2009). Confidence intervals
for the results below were estimated using 100 bootstrap re-
samplings.

Experiments
We performed preliminary experiments on two datasets at-
tainable through the web:

Dataset 1
We extracted resource descriptions of U = 2 people (Tim
Berners-Lee and Kjetil Kjernsmo) from weekly Linked Data
crawls. We extracted resources associated via object prop-
erties. This yields for each user u = [1,2] a T ×W data ma-
trix Xu, containing W = 25 column vectors x ∈ RT , where
T = 1129 is the number of unique object property/resource
pairs and W is the number of weekly time samples.

Results for Dataset 1
The goal was to find dependencies between people, for ex-
ample the change of common interests over time. The over-
lap between the resource descriptions and especially the rate
of change in the descriptions of the people were minimal
(as generally the case in most hand-curated Linked Data re-
sources). As the input data was of suboptimal quality, i.e.

did not contain temporally covarying data, the dependency
measure used did not reveal useful results.

Dataset 2

We extracted a set of U = 30 friends on http://www.last.fm/
and downloaded each user’s weekly artist charts. From the
top ten artists, we extracted the tags associated with that
artist. This yields for each user u = [1,2, ...,U ] a T ×W
data matrix Xu, containing W = 160 column vectors x ∈RT ,
where T = 1293 is the number of unique tags. So for each
week w = [1,2, ...,W ] we constructed a vector of tag counts
x, representing one column of Xu. We then added up all Xu
into a common matrix Z to obtain a collective tag histogram
over time:

Z =
U

∑
u=1

Xu. (8)

The T ×W matrix Z contains the collective listening be-
haviour of the entire friend subgraph crawled. This allows
to analyse the dependency dynamics between the single user
data in Xu and the data of an entire subgraph of friends in Z.
Considering the mean listening behaviour as computed in
eq. 8 instead of single users exploits the graph structure of
the data: Common features of single users can be summed
up to a richer data set. Some users show only irregular lis-
tening behaviour and the poor data quality does not allow to
draw meaningful inferences, just as in the case of dataset 1.
However we can make use of the data of users with irregular
listening behaviour by including them in Z.



Results for Dataset 2

In the second experiment we were interested in how single
users listening behaviour in Xu was dependent on the collec-
tive user listening behaviour in Z. The results show how this
dependency changes over time and in particular which fea-
tures contribute to these dependency changes. Despite the
large amount of data collected, the quality of some users’
data was still poor due to the fact that not all users use last.fm
equally often. In this study we are mainly interested in users
that show clear dependencies to the common listening pref-
erences, as those are the ones that are useful for understand-
ing past trends or predicting future ones.

For the ideal user, i.e. one that regularly uses this plat-
form, the results of tkCCA show interesting dependency pat-
terns. In figure 2 we show representative results for two
users exemplifying two prototypes of listening behaviour,
trend setters and trend followers. The two columns show for
each user the canonical correlogram (bottom row) and the
feature weights for the top five features over time (top row).
Inspecting the correlogram reveals how similar the listen-
ing profile of a user was to the collective listening behaviour
and how this similarity changed over time. In our setting,
for negative time lags the user was ahead of the masses, for
positive time lags the masses were ahead of the user. We
selected the top 5 features according to their first derivative
over time, that is the features plotted are those that changed
most over time.

The user in the left column of figure 2 shows high cor-
relations with other users for negative time lags and low
correlations for positive time lags. The tags depicted in
the feature weights above exhibit the same dynamics. This
means that the user listened to the songs labelled with the
respective tags long before everybody else did. When more
users started to listen to these categories however, the user
changed his listening preference and avoided these cate-
gories, a listening behaviour which could be interpreted as
trend setting.

Results for another user shown in the right column of fig-
ure 2 display the opposite listening behaviour. The correla-
tions with all users for negative time lags were relatively low,
meaning that the user’s listening behaviour is not very simi-
lar to what all other users will listen to in the future. For pos-
itive time lags however, the correlation increases, indicating
that as soon as some trend emerged, the user joined the trend.
The trend can be identified by inspecting the feature weights
over time: the tags constituting that trend show high positive
values for positive time lags, a kind of behaviour that can be
interpreted as trend following.

It is important to note that the although we used the same
data representation for the single user data Xu and the col-
lective user data Z, the framework presented can easily deal
with data of different dimensionality. This means that we
could have estimated the dependencies as well using a dif-
ferent set of tags for either data source. For instance one
could imagine another social music platform using different
tags. The dependencies between users of different commu-
nities could still be analysed, given that the tags are corre-
lated over time.

Discussion

The results show that using a graph-structured data represen-
tation we can extract useful information about the temporal
dynamics of the underlying data. Prototypical dependency
relationships such as trend setting or trend following can be
detected provided the input data is of sufficient quality.

In this work we used music genre tags as features. We
chose this feature as it is best suited for our purpose of de-
pendency estimation. Other features, such as the weekly
artists playcounts (the weekly in-degree of the artist node)
can exhibit a sparse temporal structure, i.e. the artists have
high playcounts in few weekly charts but are zero in most
weekly charts. This is exemplified in figure 3, left panel.
Note the maximum in the histogram (right border of time
series plot) at playcount 0. In contrast the music genre tags
have richer temporal dynamics than the artists’ names, as
shown in figure 3, right panel. The histogram clearly shows
the smoother temporal dynamics of the feature time series
when genre labels are considered instead of artists’ names.

A major problem with tags is that they are a coarse-
grained categorisation scheme and often refer to general cat-
egories such as “my favourite album” or “albums i own”. In-
stead of tackling these problems explicitly, as in (Lehwark,
Risi, and Ultsch 2007), using a more structured taxonomy to
classify artists could also yield more meaningful categories.

One of the main advantages of our approach is that by us-
ing the links between entities in Linked Data sources, one
can incorporate new taxonomic classification schemes. Cur-
rently only last.fm provides tag information about artists,
however, future work could include features from other
platforms as well, for example by exploiting the common
song identifiers between last.fm and MusicBrainz for popu-
lar tracks. However, the above mentioned sparseness of the
input data (i.e. the insufficient track-overlap between users
across weeks of listening data) prevents us from using a
song-based resolution level. Another example of the sparse-
ness issue is the experiment carried out on Linked Data taken
from the Web. As the number of shared identifiers in Linked
Data is currently low, the dependency measure used did not
reveal useful results.

At first glance it might seem desirable to apply algorithms
which are less sensitive to sparse input. The approach out-
lined in this work is different: We anticipate that existing and
rapidly growing publicly accessible data bases could be used
in combination as a rich corpus suitable as input to standard
machine learning algorithms, which we have demonstrated
to work in principle on graph-structured data with a tempo-
ral dimension.

The issue of knowledge sparseness on the Semantic Web
has been noted in e.g. (Sabou, Lopez, and Motta 2006).
Our notion of sparseness is a different one: here we refer
to the small amount of temporal (co-)variation of connec-
tions between nodes in a data graph. Similar to our work,
(Hotho et al. 2006) use tags as resolution and calculate in-
dividual ranks at a given time tm by taking into account all
data occurring before m. In contrast, our algorithm uncovers
dependencies (such as leader and follower) over time.



20 40 60 80 100
0

20

40

60

80

Artist Playcount Time series

In
de

gr
ee

 a
rt

is
t=

[N
ou

ve
lle

 V
ag

ue
]

Time [Weeks]
20 40 60 80 100

6

8

10

12

14

16

Tag Playcount Time series

In
de

gr
ee

 ta
g=

[a
lte

rn
at

iv
e]

Time [Weeks]

Figure 3: Representative example time series for features extracted from artist play-counts (left) and genre label play-counts
(right); histograms for respective play-count values are attached on the right side; artist play-counts exhibit a sparse temporal
structure, whereas genre tag play-counts show richer temporal dynamics;

Conclusion

We have shown how user-generated data sourced from the
web can be fruitfully applied to machine learning algorithms
to uncover temporal dependencies in data represented as
graphs. To be able to derive meaningful results, the input
data has to be of sufficient quality and linkage. The rate of
change in the subset of Linked Data which we used in our
first experiment is currently too small to detect any meaning-
ful temporal correlations, probably because people only ir-
regularly update their hand-crafted RDF documents. In con-
trast, our second experiment shows that data emanating from
users interacting with a web site is well suited for uncover-
ing meaningful temporal patterns.

We have identified the quality of temporal structure in
the input data as major factor influencing the quality of re-
sults generated by our algorithm. To derive meaningful in-
put from Linked Data for machine learning algorithms we
use aggregated data (such as tags or genres) as input rather
than entity descriptions directly, given that aggregated data
exhibits a dense temporal structure to exploit.

Currently published Linked Data rarely contains data with
a temporal dimension. The benefit of automatically pub-
lishing detailed data containing temporal properties from
within existing web sites would be twofold: Better integra-
tion would make large amounts of high-quality data eas-
ily available to machine learning algorithms, and machine
learning researchers would profit from the new application
domain of dynamic web data. Widespread availability of
large amounts of high-quality interlinked data allows for a
wide range of new applications, for example helping re-
searchers to better understand the behaviour of groups of
people or providing better services to users.

Acknowledgements

We would like to thank Pascal Lehwark for help with the
last.fm API and Klaus-Robert Müller, Frank C. Meinecke,
Julia Veit, and Phillip Sorg for comments on the manuscript.
This work has been partialy supported by DFG’s Multipla
project (grant number 38457858) and the European Union’s
PASCAL 2 Network of Excellence (ICT-216886).

References
Akaho, S. 2001. A kernel method for canonical correlation
analysis. In In Proceedings of the International Meeting of
the Psychometric Society (IMPS2001. Springer-Verlag.
Bießmann, F.; Meinecke, F.; Gretton, A.; Rauch, A.;
Rainer, G.; Logothetis, N.; and Müller, K.-R. 2009. Tem-
poral kernel cca and its application in multimodal neuronal
data analysis. Machine Learning Journal, Special Issue
Learning from Multiple Sources, in press.
Fukumizu, K.; Bach, F.; and Gretton, A. 2007. Statistical
consistency of kernel cca. Journal of Machine Learning
Research 8:361–383.
Hotelling, H. 1936. Relations between two sets of variates.
Biometrika 322–376.
Hotho, A.; Jschke, R.; Schmitz, C.; and Stumme, G. 2006.
Trend detection in folksonomies. In First International
Conference on Semantics And Digital Media Technology
(SAMT), 56–70.
Lehwark, P.; Risi, S.; and Ultsch, A. 2007. Visualization
and clustering of tagged music data. In 31st Annual Con-
ference of the German Classification Society.
Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; and
Schölkopf, B. 2001. An introduction to kernel-based learn-
ing algorithms. IEEE Transactions on Neural Networks
12(2):181–201.
Sabou, M.; Lopez, V.; and Motta, E. 2006. Ontology
selection for the real semantic web: How to cover the
queen’s birthday dinner? In 15th International Conference
on Knowledge Engineering and Knowledge Management
(EKAW), 96–111.
Salton, G., and McGill, M. J. 1986. Introduction to Mod-
ern Information Retrieval. New York, NY, USA: McGraw-
Hill, Inc.
Schölkopf, B., and Smola, A. 2002. Learning with Kernels.
Cambridge, MA, USA: MIT Press.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.


