
Link Traversal and Reasoning in

Dynamic Linked Data Knowledge Bases

Andreas Harth

Institut für Angewandte Informatik und Formale

Beschreibungsverfahren (AIFB)

Karlsruher Institut für Technologie (KIT)

Habilitationsschrift (kumulativ) zur Erlangung der venia legendi

Link Traversal and Reasoning in

Dynamic Linked Data Knowledge Bases

Andreas Harth

December 21, 2015

List of Publications

[P1] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe

Sattler, and Jürgen Umbrich. Data Summaries for On-demand Queries

over Linked Data. In Proceedings of the 19th International Conference

on World Wide Web (WWW), pages 411–420. 2010.

[P2] Sebastian Speiser and Andreas Harth. Integrating Linked Data and

Services with Linked Data Services. In Proceedings of the 8th Extended

Semantic Web Conference (ESWC), pages 170–184. 2011.

[P3] Andreas Harth and Sebastian Speiser. On Completeness Classes for

Query Evaluation on Linked Data. In Proceedings of the 26th Confer-

ence on Artificial Intelligence (AAAI). 2012.

[P4] Anisa Rula, Matteo Palmonari, Andreas Harth, Steffen Stadtmüller,

and Andrea Maurino. On the Diversity and Availability of Temporal

Information in Linked Open Data. In Proceedings of the 11th Interna-

tional Semantic Web Conference (ISWC), pages 492–507. 2012.

[P5] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi

Studer. Data-Fu: A Language and an Interpreter for Interaction with

Read/Write Linked Data. In Proceedings of the 22nd International

Conference on World Wide Web (WWW), pages 1225–1236. 2013.

[P6] Andreas Harth and Steffen Stadtmüller. Parallel Processing of Rule-

based Programs on Linked Data. 2015. Under review.

1

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Information Ecosystems . 5

1.3 Challenges . 7

1.4 Contributions . 9

1.5 Overall Approach . 10

1.6 Outline . 12

2 Query Evaluation on Linked Data 13

2.1 Querying Linked Data with Data Summaries 14

2.2 Descriptions for Data Sources and Systems 15

2.3 Completeness of Query Results 16

2.4 Temporal Information . 17

2.5 Related Work . 18

3 Declarative Specifications for Link Traversal 18

3.1 Rule-based Languages . 19

3.2 Parallel Evaluation of Programs 20

3.3 Related Work . 20

4 Conclusion 22

2

1 Introduction

1.1 Motivation

Computer technology has led to a rapid growth of available data: enormous

amounts of data are created by sensors or people interacting with devices.

Most of these sensors and devices are joined together via communication

networks. Communication requires a channel to exchange messages and a

shared language between sender and receiver to encode these messages.

The World Wide Web provides a widely-used technology stack for com-

munication [7]. The web is currently evolving from an infrastructure for

publishing and accessing documents to an infrastructure for publishing and

accessing data. Linked Data [6], building on web technologies combined with

a graph-structured data format and decentralised linking, provides means to

cover both communication protocol and representation of the semantics of

messages. While previous approaches handled communication and machine-

interpretable semantics separately, in our work we bring together network

access to interlinked data with logic-based knowledge representation and

logic programming approaches.

Providing a unified approach for both data access and data processing

brings benefits in scenarios that require the integration of data from multiple

sources or the interoperation between disparate systems. The approach we

follow is geared towards scale, that is, we assume that there is a large number

of data sources and systems under diverse ownership. Our approach builds

on hyperlinks for connecting different sources and systems together in a

decentralised way. Such a decentralised approach has been successful with

the web of documents. Now, we can see the beginnings of a web of data based

on the Linked Data principles. For example, in the areas of digital libraries

and life sciences, there are first systems deployed which provide integrated

access to a fixed number of data sources based on Linked Data [5, 19]. So far,

however, none of these systems harness the power of arbitrary hyperlinks

put in by a large number of people in a decentralised manner, as in the case

of the hypertext web.

Our hypothesis is that hyperlinks can be used to provide integrated ac-

cess to the web of data. To test the hypothesis, we have to provide methods

operating on the web of data that use similar techniques for link traversal to

those methods we know from web browsing. Given that the content on the

web of data is represented in graph-structured form in the Resource Descrip-

tion Framework (RDF) [46], users should be able to access the data using

3

declarative queries over the data. In addition, users should be able to au-

tomate link traversal with appropriate languages for encoding link traversal

behaviour.

It is important to note that we do not talk about data integration sce-

narios where a predetermined set of files are loaded into a local repository

and then queried, as is common in most data integration systems [21]. In

other words, the usual approach for data access and integration today is to

specify one (or a few) sources, create mappings on the schema and instance

level, download the entire data from these sources, and then try to provide

integrated query capabilities over the local data “warehouse”. Rather, we

assume a web environment, where content authors provide additional links

from their data to other data in a completely decentralised manner. Fur-

ther, instead of running the integration step infrequently (once a day, say),

we would like to be able to run the integration step at regular intervals. In

the web scenario, the data integration system should take these links into

account, and actively dereference data from linked sources during query pro-

cessing. Then, data providers can potentially produce a completely different

result of the data integration process simply by adding hyperlinks to their

sources. In case the data integration system hits the source in question, the

system follows links from that source during runtime, and then again links

from the linked source, and so on. Such an on-demand approach is beneficial

in applications that require access to fresh data, and naturally extends to

applications that change a data item in a remote system (to book a concert

ticket, for example).

In the web of documents, users access documents via a user agent (for

example, web browsers). These documents, connected via hyperlinks, are

published by a large number of people. Now, a browsing session works as

follows. Users start from a document, and just follow hyperlinks prepared

by the document authors, until the users have satisfied their information

need (or abandon their browsing session).

Our assumption is that in a web of data, the process should work analo-

gously: user agents start from a document containing data, and just follow

hyperlinks to other documents containing data. With access to data instead

of hypertext web pages, users should be able to automate the link traver-

sal activity, and the user agents operating on data should use semantics

provided by the sources to be able to integrate the data.

The interfaces specified by web architecture are domain-independent,

and can used to publish and access both hypertext documents and data.

Further, these interfaces can be used to provide access to internet-connected

4

physical devices (the so-called “Internet of Things”), leading to a “web of

things”1. In a web of things, provided there are hyperlinks, the browsing

process still works. In such scenarios, users require not only access to sensors,

but also the ability to incorporate effectors; manipulating data becomes as

important as accessing data2. If we assume an interface that allows for

agents to change the state of resources, hyperlinks and semantics can be

also used to interconnect devices and components from disparate systems.

1.2 Information Ecosystems

As the amount of data increases, the number of systems providing and pro-

cessing data increases as well, leading to complex information ecosystems

with massive amounts of data, a very large number of data sources and

systems operated and used by a multitude of stakeholders [24].

We assume a decentralised system for sharing and accessing information.

While centralised components simplify coordination, centralised services re-

quire an organisation to operate the service, which leads to a power structure

and a single point of failure. On the other hand, there is increased techni-

cal complexity when building systems without centralised components3. A

single team responsible for integrating a small number of sources may be

quickly achieving results with imperative programs and glue code. But if

we assume a very large group of participants distributed across the globe,

and we want to achieve integrated access to their data and interoperation

between their systems, imperative programs and glue code may prove unsus-

tainable. Rather, it makes sense to do the up-front investment of providing

a common abstraction to build on, to ease integration and interoperation. In

the case of the web, that abstraction is based on resources and hyperlinking.

In other words, in large distributed systems we need a flexible and exten-

sible approach for data access, integration and manipulation. At the same

time, a constrained minimal interface, which is easy to learn and simple to

implement, facilitates widespread adoption.

Consistency is a recurring challenge in open systems of interconnected

and interdependent computers [27]. Because many people contribute to a

1http://www.w3.org/WoT/
2While there have been ways to update data in HTML (via web forms) and Linked Data

(via RESTful Linked Data APIs), in the web of things the ability to change a resource
state is crucial.

3There are a few centralised components in the architecture of the internet. For ex-
ample, the assignment of IP addresses is centralised, and so is the Domain Name System
(DNS) - albeit those are organised in a hierarchical fashion.

5

potentially huge distributed systems, mistakes occur and errors have to be

dealt with. On the internet, the so-called robustness principle applies: “be

conservative in what you do, be liberal in what you accept from others”4.

In link traversal systems, we might have to accept arbitrary data from the

sources reachable via links. To be able to process data with hitherto un-

known identifiers, we need semantics that describe the data items.

The integration of arbitrary data from the web represents a formidable

challenge. However, the potential gain in functionality is tremendous. Based

on the available data, data consumers can easily pick and choose the appro-

priate data for a specific application. Access to a large quantity of data

becomes a quality in itself [22]. Following hyperlinks and dealing with the

semantics provides the basis for integrated access to vast amounts of data

from massive numbers of web sources.

On the web, the Hypertext Transfer Protocol (HTTP) is the single pro-

tocol for universal data transfer. Instead of allowing arbitrary operations,

HTTP defines a minimal set of operations to create, read, update and delete

resources (CRUD)5. HTTP is robust in the face of unreliable networks or

changing network connections, with stateless request/response communi-

cation methods, instead of persistent connections or sessions on the socket

layer as with Telnet or the Simple Mail Transfer Protocol (SMTP). In HTTP,

each request is self-contained; that is, each request contains all information

necessary for the server to process the request independently of previous

requests, which facilitates load balancing and caching.

The focus of web architecture on a minimal set of operations in a re-

quest/response paradigm is a constraint. However, the restriction that the

architecture imposes provides a fixed structure (and less degrees of freedom).

Such a fixed structure makes it easier for data publishers and consumers to

operate in.

Approaches that take a resource-centric view based on the core web stan-

dards URI and HTTP with a limited set of operations (often subsumed un-

der the acronym REST, short for Representational State Transfer) are now

more popular than “enterprise” standards that allow for the definition of

4Also called Postel principle, after Jon Postel, long-time editor of the Request for
Comments documents, among them RFC 761, which specifies the Transmission Control
Protocol (TCP) https://tools.ietf.org/html/rfc761#page-13.

5HTTP is very carefully extended to cater for updates and streaming data. RFC
5789 introduces a PATCH operation to be able to specify updates without sending the
entire representation, RFC 7252 introduces the Constrained Application Access Protocol
(CoAP), a lightweight version of HTTP designed for accessing sensor data in web of things
scenarios, and adds an OBSERVE operation.

6

arbitrary operations in the style of remote procedure calls [42]. On the web,

REST APIs have overtaken APIs based on enterprise SOAP/WS-* tech-

nologies6. Uniform Resource Identifiers (URIs) and HTTP are ubiquitous,

HTTP APIs are commonplace, programmers are familiar with the protocol

stack, and tools and libraries for HTTP are mature and widely available.

Newly designed interfaces often build on HTTP rather than inventing a new

wire format for the protocol. Thus, web architecture – the use of URIs to

identify resources, and HTTP as transport protocol – is the dominant way

of accessing and manipulating data in networked systems.

Consequently, we assume as basis for our work an ecosystem consisting

of:

• a network stack for communication;

• global identifiers for naming and referencing resources (URIs);

• a communication protocol for accessing (reading) and manipulating

(writing, creating, deleting) state representations of URI-identified re-

sources (HTTP);

• a graph-structured data format (RDF) and knowledge representation

languages, viz. RDF Schema (RDFS) and subsets of the Web Ontology

Language (OWL);

• a community of authors providing data including links to other data,

developers providing software, and people who run and operate the

infrastructure providing access to data and services.

1.3 Challenges

The overarching challenge we tackle relates to the fact that our goal is the

integration of heterogeneous data and the interoperation between diverse

systems on a very large scale. Web architecture provides the technologies for

a minimal but universal interface to access and manipulate a broad variety

of content and functionality in various systems. Further, web architecture

heavily relies on hyperlinks for resource discovery.

Linked Data adds RDF as graph-structured data format. Many sources

use in addition lightweight knowledge representation languages (RDFS, parts

of OWL). In experiments and prototype systems, we leverage the vast amount

6ProgrammableWeb (http://www.programmableweb.com/protocol-api) lists 8,905
REST APIs and 2,432 SOAP APIs as of November 20, 2015.

7

of data that has been made available by the community of Linked Data en-

thusiasts. While many Linked Data sources are currently read-only, there

are standardisation efforts for providing write access to systems in form of

the Linked Data Platform recommendation [48].

To be able to use the available Linked Data on the web and answer

an information need, we require methods to navigate the large interlinked

data graph. In other words, we require methods to specify link traversal.

The information need can be expressed as a query Q over given datasets or

systems D, while D is distributed, hyperlinked and not completely known

a priori. Our methods assume an entry point: an initial source d0 ∈ D,

or a subset of sources D0 ⊆ D, similar to how a web browsing session

starts. From then on, our method relies on following links to access more

data. Such a method is in contrast to traditional data integration systems,

where there are few, large sources that are predetermined. In our case,

D consists of a massive number of small sources that are interlinked. We

thus require a means to specify what links should be traversed, and actual

systems that carry out the traversal. Further, as the users do not know D

when formulating their information need, the users might express the query

in a different vocabulary to the vocabulary in which the data is encoded in.

Thus, we need ways to reconcile heterogeneity in the data.

We identify the following challenges in the described ecosystem:

• C1: A challenge refers to methods and algorithms to access and query

the distributed data. Are there ways to deal efficiently with the large

number of small sources that constitute Linked Data? How can we

provide read-access to data that is created dynamically?

• C2: A hyperlinked environment, which can actually be infinite, di-

rectly raises the question of completeness: how does a system know

when to finish accessing sources? How can a system make sure that it

accesses all data required for answering a given query?

• C3: Data on the web is not static but dynamic and thus changes over

time. The modelling of temporal information is different across sources

on the web. What are the characteristics and the quality of temporal

data on the web?

• C4: Given that the data is created by many different authors that

do not coordinate, we require more fine-grained specifications of link

traversal than those that can be encoded in a query. How can we

specify link traversal with concise, declarative means?

8

• C5: While the ability to answer queries over large amounts of inte-

grated data from multiple sources is a first step, for full interoperation

between systems we require the ability to include effectors. How can

we create systems that not only access, but also manipulate the state

of systems in hyperlinked environments?

• C6: Given the large data volumes, we require scalable algorithms and

methods for data access, query processing and reasoning. Because

data access is IO-bound, and data processing is CPU-bound, what are

methods to balance both type of tasks in a parallel setting to improve

performance?

1.4 Contributions

Our approach takes the architecture of the document web as starting point

and transplants that architecture to the realm of data. Compared to more

traditional data management methods, our approach builds on hyperlinks

for data discovery and thus is substantially different to approaches relying

on a fixed number of sources listed in centralised catalogues. However, we

believe that an approach based on decentralised linking is a feasible way

for tackling the difficult challenge of accessing massive amounts of disparate

data and systems, exacerbated in upcoming web of things environments

(for example, smart energy grids, smart homes, smart vehicles or smart

factories).

We address the individual challenges with the following contributions:

• C1: We provide methods and algorithms to access and query data

in distributed environments [P1], and data that is created dynami-

cally [P2].

• C2: We define several completeness classes for link traversal methods

based on the correspondence in Linked Data between the identifier of

a thing and the identifier of the data source with descriptions about

the thing [P3].

• C3: We provide approaches to model temporal information, includ-

ing an empirical analysis of how sources provide temporal informa-

tion [P4].

• C4: We provide a language to specify link traversal and reasoning on

Linked Data in concise, declarative means [P5, P6].

9

• C5: We provide means to also change/manipulate data and thus invoke

actions within our framework [P5].

• C6: We present scalable algorithms and methods to balance data ac-

cess, query processing and reasoning on parallel hardware [P6].

The presented contributions are pieces working towards a long-term goal

of enabling autonomous behaviour of software agents in networked environ-

ments described next.

1.5 Overall Approach

Over the years, there have been many proposals for pieces of software that

carry out tasks in large networked environments on behalf of its users. Kahn

and Cerf, the “fathers of the internet” [13], already described such systems

(dubbed “knowbots”) in a project description in 1988 [31]. Etzioni and Weld

proposed the notion of “softbots”, involving artificial intelligence (AI) plan-

ning to carry out tasks for users on various internet resources in 1993 [18].

Wiederhold introduced the concept of “mediators” for accessing data from

heterogeneous sources in 1996 [51]. Berners-Lee et al.’s 2001 article about

the Semantic Web also included the notion of software agents [9].

We share the long-term goal of enabling integration and interoperation

in networked systems. We argue that hyperlinks are the missing piece in

achieving scale in terms of the number of sources and systems contributing

to a common environment. Thus, our research focus is on methods for data

access and manipulation in interlinked environments.

While it would be in principle desirable to have perfect data, the cost of

achieving that level of quality can be prohibitive. Thus, the concept of pay-

as-you-go data integration [21] has emerged: graph-structured data provides

ways to view the data integration process as incremental, and integrate data

as it is necessary to answer the information need. We want to take that idea

one step further, and automatically take into account the data integration

efforts of many contributors provided in a decentralised way on the web.

As more and more data providers and authors add mappings to their data,

the data consumers get an increasingly coherent and integrated view on

the decentralised data. Rather than starting with data sources that are to

be integrated, in our approach users start with a query that expresses an

information need, and then try to find sources which provide data. The users

then incrementally add mappings, until more and more results are returned

for a query.

10

Existing approaches for autonomous access to sensors and effectors are

often built on AI planning techniques, which require elaborate descriptions

of sensors and effectors, as do approaches based on Semantic Web Service

technologies [49]. While there are languages available for describing Web

Services and Web APIs, one cannot assume large amounts of cleanly speci-

fied and described sources and effectors on the web7. As even the problem of

providing integrated query access to interlinked graph-structured data is far

from being solved and still an active area of research, we assume a simpler

reactive model.

We base our work on an architecture that is data-driven (reactive) rather

than goal-oriented; necessary descriptions are encoded into a rule-based

specification, as opposed to assuming that the descriptions are attainable

in a distributed way.

In our work, we assume that queries and link traversal specifications are

evaluated at different points in time, given that the underlying data sources

change [25]. In general, we calculate a fixpoint over the specifications. To be

able to also incorporate state manipulation, consider two loops, taking ideas

from cognitive architectures including Soar [45] and the widely deployed

robotics control architecture from Brooks [12]. Figure 1 illustrates the high-

level architecture with two main loops: the sense (polling) loop accesses the

current state of the world, and the act loop changes the state of the world

accordingly.

An instantiation of the sense cycle involves the following steps:

• Get the current snapshot of the state of the set of resources that rep-

resent the world.

• Materialise the data in the snapshot according to specified deduction

rules.

• Follow links as specified in a rule-based program.

• Carry out queries over the materialised snapshot.

The sense cycle runs until a fixpoint has been reached, that is, the appli-

cation of rules does not lead to new derived data or requests. Given that

7Changing the technologies used on the internet or the web takes years. Witness
for example the slow adoption of IPv6, or the slow adoption of semantic annotations,
from the specification of RDF Schema in 1999 [11] to a state where about 15 per-
cent of web pages are annotated with data in 2013. http://www.dataversity.net/

schema-org-chat-googles-r-v-guha/.

11

R

R

R

R
HTTP GET

HTTP PUT/POST/DELETE/PATCH

World
State

Reactive System/
Agent

Read/Write
Linked Data

Sense
Loop

Act
Loop

Figure 1: High-level architecture of a reactive link traversal system. The
sense loop derives a snapshot of the current world state via HTTP GET
operations on resources. Once the current snapshot has been derived, the
system manipulates resource state via HTTP PUT, POST, DELETE and
PATCH operations in the act loop.

data sources may change, users may choose to run that cycle at specified

intervals to refresh query results, and so take into account the dynamics of

data sources. In various prototypes, we operate on intervals as small as 33

ms (30 Hertz) [34, 35].

In case we want to also incorporate effectors (write access), we have to

extend the interface to systems to allow for write access. Then, we can also

extend the language to support unsafe HTTP requests8. Now, it is possible

to trigger actions based on the materialised snapshot. With the appropriate

extensions, we are able to carry out sequences of actions.

1.6 Outline

The remainder of the document is organised as follows.

Section 2 is mainly about query evaluation systems that leverage links

to access and query Linked Data. We assume that the input from the user

is just a query, and the method makes assumptions as to which sources

to access. We mainly cover read-access to Linked Data, and explain how

[P1], [P2], [P3] and [P4] fit into the overall picture. Section 2 addresses

challenges C1-C3.

8PUT, POST, DELETE and PATCH.

12

Section 3 introduces our language for declarative specification of link

traversal. Rather than just giving a query as input, the user specifies a

query and a rule-based program that encodes how to derive new data and

new requests [P5]. We also cover the ability to manipulate the state of

resources. We further present algorithms required for scalable evaluation of

those declarative link traversal specifications in [P6]. Section 3 addresses

challenges C4-C6.

Section 4 concludes with a summary and an outlook.

2 Query Evaluation on Linked Data

Many systems that operate over RDF data require capabilities for query

evaluation. SPARQL (a recursive acronym for SPARQL Protocol and RDF

Query Language) is a query language for RDF specified by the W3C [44].

SPARQL allows for queries build on the notion of graph pattern matching

(so-called Basic Graph Patterns, BGP), including conjunctions, disjunctions

and optional patterns.

SPARQL includes support for dereferencing URIs to RDF graphs via

HTTP, with the FROM and FROM NAMED clauses; a query processor may re-

trieve the representations of the graphs in the FROM and FROM NAMED clauses

from the web before evaluating the query. However, all RDF graphs are

retrieved before query evaluation starts; SPARQL thus does not provide

facilities to follow links.

With the approach introduced by Hartig et al. [26], it is possible to an-

swer certain SPARQL queries on Linked Data directly. Given a SPARQL

query Q (with certain restrictions so that it is possible to start at sources

with URIs specified in the BGP part of the query), the link traversal ap-

proach iteratively expands the set of sources by following the links specified

in the BGP. While SPARQL queries posed over locally available indexed data

take seconds to evaluate, evaluating queries over the Linked Data sources

(while accessing the live sources at query processing time) may take minutes.

Some of the queries cannot be answered in the link traversal approach,

because the query processor does not have any information about the avail-

able sources at all. At least one dereferencable URI in the query is required

as starting point. During query evaluation, the method iteratively derefer-

ences URIs bound to variables of the query. One of the drawbacks of the

method is that it does not consider previously dereferenced graphs in subse-

quent runs. Another limitation is that the termination condition is specified

via a heuristic. We address these limitations in the following two sections.

13

2.1 Querying Linked Data with Data Summaries

In [P1], we introduce a data structure to compactly store a summary of

Linked Data sources. Such a summary can reduce the amount of data re-

trieved during query processing, and also reduce the amount of time spent

traversing links, as previously discovered graphs are stored and immediately

available during query processing. In the following, we sketch the struc-

ture of the data summary, how we build the summary, and how we use the

summary in query evaluation.

The summary is based on a QTree data structure [30], which in principle

is a combination of histograms with R-trees. As such, the QTree can store

multidimensional data and capture attribute correlations. However, we can-

not hold detailed information in the QTree due to storage requirements, and

thus we approximate the information we hold using buckets. Thus, we group

information together and thus might loose precision (we introduce false pos-

itives, but not false negatives). In an experiment carried out on a dataset

of 3 million triples from about 16,000 sources with 516MB, the summary

data structure requires around 22MB on disk, yielding a compression ratio

of 96%. A triple in the QTree is represented as a point in a multidimensional

space; a triple pattern is represented as a region.

The summary data structure can be based on data accessed via crawling,

or on data accessed via link traversal. Combining both approaches elegantly

solves the cold-start problem: a system could start with performing a plain

link traversal approach, and successively expand the QTree summary with

more relevant sources. As such, a system could expand its knowledge of

the available interlinked data over time, and thus increase the coverage and

efficiency of query answering gradually.

During query processing, the BGP of a query Q is split into its con-

stituent triple patterns. Each triple pattern is then sent to the summary

index, and the summary index returns the list of sources that may contain

answers to the triple pattern. Please note that due to the approximate na-

ture of the index, the returned list is a superset of the sources. A triple

pattern (due to the use of variables) is represented as a region in multidi-

mensional space.

For query processing, we access all the buckets that match a triple pat-

tern, and which results in the list of sources. We can additionally rank the

list of sources based on the estimated result cardinality, and therefore reduce

the number of sources that have to be dereferenced (which is expensive). Let

T be the total number of sources in the data, and E the number of estimated

14

sources. We calculate the benefit 1− E
T that measures the number of sources

that can be skipped compared to the näıve approach of simply accessing all

known sources with zero benefit. We achieve benefits ranging from 20% to

80%, depending on the shape of the query. We also investigate the impact

of ranking based on the estimated cardinality of sources stored in the QTree

buckets. With the top-200 sources, we achieve recall of above 50% for four

out of seven test query sets.

With the approach in [P1] we create an approximate description of the

contents of arbitrary Linked Data sources.

2.2 Descriptions for Data Sources and Systems

While in general Linked Data sources provide arbitrary RDF graphs, there

are many data sources that provide data in a regular structure. Consider

large datasets converted from relational databases, or data exposed via Web

APIs. Some data sources may not be published as a fully materialised knowl-

edge base, because the underlying data may be constantly changing (e.g.,

sensor data), data is generated on the fly (e.g., distance between geograph-

ical points specified with arbitrary precision) or the data provider wants to

restrict access to data (e.g., prices for flight tickets). Some of the sources

have a simple query interface over data that follows a regular structure, and

thus could be described. For essentially relational data sources that follow

a fixed structure, we can devise descriptions that support linking and query

processing.

In [P2], we show how to describe a Linked Data interface over parame-

terised sources that are accessible via HTTP GET. We call the approach

Linked Data Services (LIDS). We assume read-only resources that take

name/value pairs as input, and return as output a regular RDF graph.

We describe the input as a SPARQL BGP that returns query solution map-

pings, which can be viewed as name/value pairs. The shape of the output

graph is also described as SPARQL BGP. Finally, the description includes

the relation between input and output.

Rather than using the descriptions for backward-chaining, that is, going

from the query Q to the sources D, in the paper we used a forward-chaining

(data-driven) approach: we materialised all data that would match the ser-

vice description. Such an approach has benefits in data collection scenarios,

and can be used in a pipeline to enrich a dataset with data from the de-

scribed services.

One of the lessons learned for the LIDS description language is that

15

while one can devise a description format for sources, actually creating and

annotating sources following that interface and that specific description is a

tedious task. Thus, in subsequent work, we decided to work on approaches

that may use source descriptions, but do not require source descriptions to

work.

Descriptions for data sources are difficult to do for graph-structured

data in general [1]. However, since many sources actually follow a regu-

lar structure, recommendations such as R2RML (RDB to RDF Mapping

Language) [16], and current work of the W3C RDF Data Shapes Working

Group could lead to more descriptions available for RDF data sources, as

the descriptions are not just provided as an extra functionality (and thus

make effort for the data provider with only benefit for the data consumer),

but are a core part of the data transformation itself on the side of the data

provider.

With Semantic Web Services [49], the descriptions are typically based on

IOPE (input-output-precondition-effect), to be able to model the structure

of the messages sent (input, output), and also the change on the world

state (precondition, effect). One major contribution of LIDS was to capture

the relation between input and output both in the description as well as

in the returned data, which IOPE descriptions did not provide. With that

type of descriptions and data model (where there is a link in the input

and the output data), it is possible to interpret the messages to and from

the service as-is, that is, the data is self-describing. Current proposals for

resource descriptions in the REST area are HAL [33], schema.org actions9

and Hydra [38].

2.3 Completeness of Query Results

The web is vast, and we need a way to specify when a query has been

answered completely. With a catalogue of descriptions of data sources (as-

suming the descriptions are complete), a query evaluation system can make

precise statements about the completeness of the query results. Given the

difficulty of getting descriptions of data sources on the web, and the lack of a

central catalogue, we want to rely on hyperlinks to discover new sources and

systems. In a hyperlinked environment without clearly defined boundaries,

having a notion of completeness of query results is a challenging problem.

Possibilities to curb the amount of sources that are dereferenced include

a limit on time and a limit on the number of dereferenced source [26]. With

9https://schema.org/Action

16

the approach of [P1], the system could be limited to dereference at most

the sources in the summary index. In [P3] we propose several different

completeness classes. Given a query, we have complete results with regard

to a completeness class C if we have accessed all sources included in the

dataset defined by C.

The broadest completeness class is web-complete, which is mainly of

theoretic interest. With web-complete, we define queries as answered com-

pletely if all data sources on the web have been considered. As the web

can be very large to infinite, in practice we will not be able to achieve web-

complete answers to a query.

The next specific completeness class is seed-complete, which assumes

that a query processor dereferences all sources that can be reached following

triple paths of maximum length of the query, beginning from the seed URIs

specified in the query.

For a more restricted completeness class, query-reachable, we exploit an

idea of authoritativeness that has been investigated in [28] and [23]. We

specify completeness based on the way how URIs are minted. There is a

correspondence between the URIs in the data and the URIs of the data

sources (either via HTTP redirects or via syntactic conventions on URIs).

Exploiting that correspondence, we can use a user-supplied authority map-

ping to determine which sources to dereference to achieve complete results

for a triple pattern, and then iteratively expand the completeness notion

to entire BGPs. Thus, we can ensure that we have accessed all sources

that correspond to the URIs in the data according to the specified authority

mapping.

2.4 Temporal Information

The periodic evaluation of programs and queries leads to query results over

time. When doing repeated evaluation of queries, we require accurate tem-

poral information to track query results over time. In [P4], we carry out an

empirical study on the different ways used in Linked Data sources of encod-

ing temporal information. While some approaches assume the availability

of temporal information in a specific way, we found little support for these

approaches on the Linked Data web. In fact, even if temporal information

was supplied, we sometimes found that the information was outdated or con-

flicting with other temporal information from the same source. Thus, we

found that the availability of temporal information representing the history

and temporal validity of statements and graphs is very limited. A lesson

17

learned was that for subsequent approaches involving dynamic data from

the web, we cannot rely on temporal information supplied from the source.

Given the rather messy state of temporal information on the web, in our

subsequent work we do not assume the availability of accurate timestamps

from the sources.

2.5 Related Work

Dataspace system aim at supporting the integration of distributed sources.

The architecture of dataspace systems includes a catalogue in which all

sources are listed, including schema information, statistics, change frequency,

accuracy, completeness, capabilities of the query interface, ownership, and

policies related to access and privacy [21]. In contrast, the web architecture

does not rely on a catalogue, but relies on hyperlinks to link sources. Both

descriptions of source and the sources’ content are accessed via HTTP. In-

formation such as change frequency are accessed via HTTP headers. With

such an architecture, the sources are autonomous, and can change informa-

tion about their rate of change without accessing a central catalogue. The

sources describe themselves, and each source can provide mappings to other

sources, expressed in RDFS or OWL.

Several link traversal systems exist that evaluate queries directly over

sources accessible as Linked Data [26, 20, 36]. The work in [P1] provides

mechanisms for optimising repeated evaluation of queries based on an in-

memory index data structure. The work in [P3] provides a method for

specifying the completeness of query results that goes beyond the heuristics

in [26, 36].

3 Declarative Specifications for Link Traversal

We have seen how to answer a query Q over an implicitly specified dataset

D. As we have hyperlinks, and D is large and diverse, we need finer-grained

control over the semantics of the data and the way we want to expand links.

Link traversal query approaches [26, 20, 36] [P1] require that the data in

the sources exactly matches the query pattern, in terms of both schema

URIs and the way how data is linked. One example for the exact match of a

query pattern is the directionality of owl:sameAs: link traversal approaches

assume that owl:sameAs is specified in the query as in the data, and do not

take into account the properties of owl:sameAs (that of an equality relation).

One example for the exact match regarding data linkage is that it is difficult

18

to specify that for a certain data source a link (rdfs:seeAlso, say) should

be followed because the target source contains useful data. To be able to

deal with the heterogeneity of the web with thousands of data authors, we

require finer-grained control over the specification of both semantics of data

items and link expansion.

The goal of our work [P5], [P6] is to declaratively specify link traversal,

and study parallel algorithms for evaluating these link traversal specifica-

tions. The basic framework for specifying link traversal are rules. We modify

rules so that instead of asserting new knowledge in the consequent of a rule,

we carry out HTTP requests if the condition in the antecedent holds. The

data returned from requests is stored in memory. Thus, the system incre-

mentally builds up the snapshot of the current state of the world. We can

either evaluate a query Q over the state of the world (the dataset D), or

trigger actions if a certain condition holds.

We define the syntax of declarative specifications for link traversal, and

an operational semantics for such programs in [P5] and [P6].

3.1 Rule-based Languages

We define logic-based languages (syntax and semantics) for integration and

interoperation with Linked Data. The syntax of the rule language to specify

programs is Notation3 [8], an extension to RDF with the ability for graph

quoting and variables.

We can define different variants of the rule language with increasing

expressivity:

• Level 0: the equivalent of positive Datalog (without function sym-

bols) [14] on binary relations (or one ternary triple relation) with

boolean built-in functions for specifying filter conditions. That lan-

guage is guaranteed to terminate, as there are no ways to generate

new symbols, and thus there is only a finite number of ways the sym-

bols in a dataset can be combined.

• Level 1: Level 0, plus the ability to specify safe HTTP requests (GET)

in rule heads; we also add built-in functions for simple arithmetic and

string manipulation. Programs in this language will terminate under

certain conditions.

• Level 2: Level 1, plus the ability to specify unsafe HTTP requests

(PUT, POST, DELETE, PATCH) in rule heads. Programs in this

language are not guaranteed to terminate.

19

In [P5], we use state transition systems [37] to characterise the changes

in Linked Data over time. Compared to the approach that operates on local

state (e.g., the Game Description Language [39]), the state our programs

operate on is the state of network-accessible remote resources.

3.2 Parallel Evaluation of Programs

In [P6], we present algorithms for evaluating rule-based programs in a par-

allel fashion. Given that data volumes are large on the web, we have to

devise scalable algorithms that exploit the recent developments in hard-

ware: more main memory and multi-core systems. While hitherto users had

to set up separate systems for data access, reasoning, and query process-

ing into a pipeline, we have devised a method which integrates the three

functionalities, and allows for efficient evaluation of the pipeline.

We experiment with two general approaches for the evaluation of re-

cursive programs: one is a rounds-based method that can be run in batch,

similar to the approach of Afrati and Ullman [2]. Another approach is a fully

streaming model, related to the approach of Barish and Knoblock [4]. How-

ever, we include query optimisation techniques to reduce both the amount

of work that has to be expended and the amount of storage space required.

In summary, we tackle the problem of parallelising the work based on

dataflow graphs, and devise a method for detecting termination in dataflow

graphs which contain cycles (in case of programs that contain recursive

rules). We have shown that the integrated pipeline has competitive perfor-

mance with existing reasoning systems, and has increased functionality for

data access.

3.3 Related Work

Declarative rule languages can provide the foundation for both query and on-

tology languages that are used on the web [43, 29]. Our rule language covers

both query and reasoning functionality. In addition, our rule language in-

cludes support for HTTP requests, and thus allows to specify behaviour next

to declarative knowledge, similar to the Game Description Language [39].

Another related concept are Abstract State Machines (ASMs) [10], which

can serve as basis for system design and analysis. In contrast, we use our

specifications for generating behaviour involving the access and manipula-

tion of the state of network-accessible resources. In other words, programs

in our rule language provide the actual executable application logic.

20

Programming models such as MapReduce [17] can be used to specify data

processing operations using higher-level functions map and reduce, and sys-

tems implementing that model are able to batch-process large amounts of

data. In scenarios where multiple operations are specified, or in applications

where batch-processing introduces too much latency, Spark [52] provides a

processing model based on mini-batches and thus reduces end-to-end la-

tency. However, these systems natively only support acyclic dataflows, and

recursion would have to be built on top. Our systems supports the evalu-

ation of cyclic dataflows based on queues that are used to break the cycle.

There are various threading models with implications for termination de-

tection. We plan to adapt our architecture and algorithms for termination

detection to these distributed data processing systems as future work, to

further scale up the amount of data that can be handled.

The system in [4] also uses a dataflow architecture to processing data

for data integration. Rather than requiring wrappers to data sources and

systems to view the underlying data in a relational model, we can assume

access to many sources that provide a Linked Data interface. Following of

hyperlinks in [4] is only supported in a very basic form, namely following

“next” links in paged result pages, while in our approach the notion of

request and hyperlink is accessible via rules.

Systems for link traversal [26, 20, 36] [P1] do not take the semantics of

data sources (the mappings of schema and instance elements) into account

during query processing. Other systems implementing reasoning [47, 41]

typically operate over locally accessible single-source datasets; we assume a

hyperlinked environment where data access and data processing are inter-

leaved. Dataspace systems [21] rely on a centralised catalogue of sources;

on the web, we assume hyperlinks between sources for resource discovery.

Stream reasoning systems [40] and complex event processing systems [3]

rely on a fixed number of sources that push data. On the web, polling is

the prevalent communication mode. Further, in an environment based on

resources and polling, we are able to discover new sources and new data

(including new reasoning constructs) at runtime.

We have used the language and system in various demonstrators, from

geospatial data integration [25], financial and statistical data integration [32]

to specifying the interoperation in interactive virtual reality systems [35, 34].

21

4 Conclusion

The web is based on a scalable architecture with simple and minimal in-

terfaces, with hyperlinks as one of the foundational concepts. While the

internet and the web are fairly recent developments, logic-based knowledge

representation, including logic programming, has a very long history. How-

ever, both fields have not been combined to the extent required to enable

declarative access to the many data sources and systems accessible via web

technologies. Neither hyperlinks nor logic-programming approaches are fully

leveraged in current approaches for data integration and system interoper-

ation based on a Linked Data interface. Often, RDF serves as an exchange

format for database archives; multiple files are loaded into a SPARQL repos-

itory and then queried, without taking into account the semantics of data

as specified using ontology languages such as RDFS or OWL. We argue

for the use of rule-based programs to handle the semantics of ontology lan-

guages, provide means to specify link traversal, and support the inclusion

of effectors or actions. To sum up, in this thesis we have made steps in

bringing together logic-based knowledge representation with the traversal of

hyperlinks and the invocation of actions, for a rudimentary specification of

behaviour in complex information ecosystems.

We have described an environment with maximum flexibility and as little

assumptions as possible. While we assume a wide-area network for commu-

nication, our methods can also be applied in local-area networks or in data

centres. We assume very simple query capabilities at the sources, but given

the unified communication protocol on the web, it is possible to dispatch

queries to sources with more expressive query interfaces, such as those based

on SPARQL or subsets thereof. We assume scenarios with many sources,

but also only a few number of sources could be accessed, even a fixed set

of sources. In these environments, however, different optimisation tradeoffs

might apply, and less generic solutions might perform better.

Our work shares some of the goals with previous research on Semantic

Web Services. One impediment to realising the vision outlined in the area of

Semantic Web Services (such as OWL-S or WMSL [49]) was that the creation

of elaborate domain models and descriptions of services never caught on with

the wider web community. In contrast, there is an active community around

Linked Data and another community around RESTful Web APIs that both

work towards similar goals with a technology stack of reduced complexity,

including a stronger focus on hyperlinks.

Data on the web is on the verge of becoming mainstream. Google’s

22

Knowledge Graph10 is an example for an application using data integrated

from the web. Wikidata [50] is a system to manage factual data as basis

for constructing infoboxes in Wikipedia. Schema.org11 is an effort led by

the big search engine companies to support the annotation of web pages

with structured content. Schema.org provides a vocabulary for schema-level

elements (of which there are only a few thousand), but not for instance-level

elements (of which there may be several millions12). While these isolated

efforts provide visibility and are a step in the right direction, the goal should

be that all web users are able to access and integrate data from the web.

In the past, the internet and the web have integrated disparate net-

works such as CompuServe, AOL and BTX/Datex-J. Currently, there are

many competing proposals for technologies and standards for the Internet of

Things, Industrie 4.0, the Smart Grid and cyber-physical systems. Our ex-

pectation is that in time, internet and web technologies will serve as the basis

for those new cyber-physical systems as well. In future application scenarios,

it becomes increasingly important to have the ability to flexibly integrate

new data sources and systems. Instead of a web browser as universal ac-

cess to information and functionality, virtual assistants, such as Amazon’s

Echo13, Apple’s Siri (originally IRIS [15]), Facebook’s M14, Google’s Now15,

Microsoft’s Cortana16 or Samsung’s S-Voice17, can provide a universal user

interface to data and functionality from multiple sites. However, if we do not

want a single company dominating how we access the web (of documents,

data, things), the underlying technologies have to remain open, and the bar-

rier to entry should be low. Everybody should have a chance to leverage

the vast amounts of information attainable via the web. We believe that

the approaches and methods we have presented fit well with these current

developments, and will make it easier for people to access and manipulate

the wealth of information and services online.

10https://google.com/intl/bn/insidesearch/features/search/knowledge.html
11http://schema.org/
12While the ultimate goal of schema.org might be to support identifiers for instance-

level elements (entities), the current mantra is “strings for things”, to avoid the need for
content providers to find identifiers for entities. However, the lack of shared identifiers
for entities requires a disambiguation and linking step before such data can be used as a
Knowledge Graph.

13http://www.amazon.com/oc/echo/
14http://www.wired.com/2015/08/facebook-launches-m-new-kind-virtual-assistant/
15https://www.google.com/landing/now/
16http://www.microsoft.com/en/mobile/experiences/cortana/
17http://www.samsung.com/global/galaxys3/svoice.html

23

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From

Relations to Semistructured Data and XML (The Morgan Kaufmann

Series in Data Management Systems). Morgan Kaufmann, October

1999.

[2] F. N. Afrati and J. D. Ullman. Transitive closure and recursive data-

log implemented on clusters. In Proceedings of the 15th International

Conference on Extending Database Technology, pages 132–143, 2012.

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning

and complex event processing in ETALIS. Semantic Web, 3(4):397–407,

2012.

[4] G. Barish and C. A. Knoblock. An expressive language and efficient

execution system for software agents. Journal of Artificial Intelligence

Research, pages 625–666, 2005.

[5] R. Bennett, C. Hengel-Dittrich, E. T. ONeill, and B. B. Tillett. VIAF

(virtual international authority file): Linking Die Deutsche Bibliothek

and Library of Congress name authority files. In World Library and

Information Congress: 72nd IFLA General Conference and Council,

2006.

[6] T. Berners-Lee. Linked Data, 2006. http://www.w3.org/

DesignIssues/LinkedData.

[7] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret.

The world-wide web. Communications of the ACM, 37(8):76–82, Aug.

1994.

[8] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler.

N3logic: A logical framework for the world wide web. Theory and

Practice of Logic Programming, 8(3):249–269, May 2008.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001.

[10] E. Börger and R. F. Stärk. Abstract State Machines. A Method for

High-Level System Design and Analysis. Springer, 2003.

24

[11] D. Brickley and R. V. Guha, editors. RDF Vocabulary Description

Language 1.0: RDF Schema. W3C Recommendation, February 2004.

http://www.w3.org/TR/rdf-schema/.

[12] R. Brooks. A robust layered control system for a mobile robot. Robotics

and Automation, IEEE Journal of, 2(1):14–23, 1986.

[13] V. G. Cerf. The day the Internet age began. Nature, 461:1202–1203,

2009.

[14] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know

about datalog (and never dared to ask). IEEE Transactions on Knowl-

edge and Data Engineering, 1:146–166, March 1989.

[15] A. Cheyer, J. Park, and R. Giuli. IRIS: Integrate. Relate. Infer. Share.

In Proceedings of the 1st Workshop on The Semantic Desktop, Nov.

2005.

[16] S. Das, S. Sundara, and R. Cyganiak, editors. R2RML: RDB to RDF

Mapping Language. W3C Recommendation, September 2012. http:

//www.w3.org/TR/rdf-schema/.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, Jan. 2008.

[18] O. Etzioni and D. Weld. A softbot-based interface to the internet.

Communications of the ACM, 37(7):72–76, July 1994.

[19] L. Feigenbaum, I. Herman, T. Hongsermeier, E. Neumann, and

S. Stephens. The semantic web in action. Scientific American,

297(6):90–97, 2007.

[20] V. Fionda, C. Gutierrez, and G. Pirró. Semantic navigation on the

web of data: Specification of routes, web fragments and actions. In

Proceedings of the 21st International Conference on WWW, pages 281–

290, 2012.

[21] M. Franklin, A. Halevy, and D. Maier. From databases to dataspaces:

A new abstraction for information management. SIGMOD Record,

34(4):27–33, Dec. 2005.

[22] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of

data. IEEE Intelligent Systems, 24(2):8–12, Mar. 2009.

25

[23] A. Harth, S. Kinsella, and S. Decker. Using naming authority to rank

data and ontologies for web search. In Proceedings of the 8th Interna-

tional Semantic Web Conference (ISWC), 2009.

[24] A. Harth, C. A. Knoblock, K. Sattler, and R. Studer. Interoperation in

complex information ecosystems (Dagstuhl seminar 13252). Dagstuhl

Reports, 3(6):83–134, 2013.

[25] A. Harth, C. A. Knoblock, S. Stadtmüller, R. Studer, and P. A. Szekely.

On-the-fly integration of static and dynamic sources. In Proceedings of

the 4th International Workshop on Consuming Linked Data (COLD),

2013.

[26] O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL queries

over the web of linked data. In Proceedings of the 8th International

Semantic Web Conference (ISWC), pages 293–309, 2009.

[27] C. Hewitt. The challenge of open systems: Current logic programming

methods may be insufficient for developing the intelligent systems of

the future. BYTE, 10(4):223–242, Apr. 1985.

[28] A. Hogan, A. Harth, and A. Polleres. Scalable authoritative OWL rea-

soning for the web. International Journal on Semantic Web Information

Systems, 5(2):49–90, 2009.

[29] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic

web architecture: Stack or two towers? In Principles and practice of

semantic web reasoning, pages 37–41. Springer, 2005.

[30] K. Hose, M. Karnstedt, A. Koch, K.-U. Sattler, and D. Zinn. Processing

rank-aware queries in p2p systems. In Databases, Information Systems,

and Peer-to-Peer Computing, pages 171–178. Springer, 2007.

[31] R. E. Kahn and V. G. Cerf. An open architecture for a digital library

system and a plan for its development. Technical report, Corporation

for National Research Initiatives, 1988.

[32] B. Kämpgen, T. Weller, S. O’Riain, C. Weber, and A. Harth. Accept-

ing the XBRL challenge with linked data for financial data integration.

In Proceedings of the 11th International European Semantic Web Con-

ference (ESWC), pages 595–610, 2014.

26

[33] M. Kelly. HAL - hypertext application language: A lean hypermedia

type. Technical report, Stateless.co, 2011, 2013.

[34] F. L. Keppmann, T. Käfer, S. Stadtmüller, R. Schubotz, and A. Harth.

High performance linked data processing for virtual reality environ-

ments. In Proceedings of the Posters & Demonstrations Track of the

13th International Semantic Web Conference (ISWC), pages 193–196,

2014.

[35] F. L. Keppmann, T. Käfer, S. Stadtmüller, R. Schubotz, and A. Harth.

Integrating highly dynamic RESTful linked data APIs in a virtual real-

ity environment. In Proceedings of the IEEE International Symposium

on Mixed and Augmented Reality (ISMAR), pages 347–348, 2014.

[36] G. Ladwig and T. Tran. Linked data query processing strategies. In

Proceedings of the 9th International Semantic Web Conference (ISWC),

pages 453–469, 2010.

[37] L. Lamport. Computation and state machines. Technical report, Mi-

crosoft Research, 2008.

[38] M. Lanthaler. Hydra core vocabulary: A vocabulary for hypermedia-

driven web APIs. Technical report, Google, 2015.

[39] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. Gen-

eral game playing: Game description language specification. Technical

report, Stanford Logic Group, 2008.

[40] A. Margara, J. Urbani, F. van Harmelen, and H. Bal. Streaming the

web: Reasoning over dynamic data. Web Semantics: Science, Services

and Agents on the World Wide Web, 25(0), 2014.

[41] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu. Parallel

materialisation of datalog programs in centralised, main-memory RDF

systems. In Proc. of the 28th AAAI Conference on Artificial Intelli-

gence, pages 129–137, 2014.

[42] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services

vs. ”big” web services: Making the right architectural decision. In

Proceedings of the 17th International Conference on World Wide Web,

pages 805–814, 2008.

27

[43] A. Polleres. From SPARQL to rules (and back). In Proceedings of the

16th International Conference on World Wide Web, pages 787–796,

2007.

[44] E. Prud’hommeaux and A. Seaborne. SPARQL query language for

RDF, Jan. 2008. W3C Recommendation, http://www.w3.org/TR/

rdf-sparql-query/.

[45] P. S. Rosenbloom, J. E. Laird, and A. Newell, editors. The Soar Papers

(Vol. 1): Research on Integrated Intelligence. MIT Press, 1993.

[46] G. Schreiber and Y. Raimond, editors. RDF 1.1 Primer. W3C Working

Group Note, 24 June 2014. http://www.w3.org/TR/rdf11-primer/.

[47] M. Sintek and S. Decker. TRIPLE - A query, inference, and transforma-

tion language for the semantic web. In Proceedings of 1st International

Semantic Web Conference (ISWC), pages 364–378, 2002.

[48] S. Speicher, J. Arwe, and A. Malhotra, editors. Linked Data Platform

1.0. W3C Proposed Recommendation, 16 December 2014. http://

www.w3.org/TR/ldp/.

[49] R. Studer, S. Grimm, and A. Abecker, editors. Semantic Web Services

- Concepts, Technologies, and Applications. Springer, 2007.

[50] D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative know-

ledgebase. Communications of the ACM, 57(10):78–85, Sept. 2014.

[51] G. Wiederhold. Mediators in the architecture of future information

systems. Computer, 25(3):38–49, Mar. 1992.

[52] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing. In Pro-

ceedings of the 9th USENIX Conference on Networked Systems Design

and Implementation (NSDI). USENIX Association, 2012.

28

List of Publications

[P1] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe

Sattler, and Jürgen Umbrich. Data Summaries for On-demand Queries

over Linked Data. In Proceedings of the 19th International Conference

on World Wide Web (WWW), pages 411–420. 2010.

[P2] Sebastian Speiser and Andreas Harth. Integrating Linked Data and

Services with Linked Data Services. In Proceedings of the 8th Extended

Semantic Web Conference (ESWC), pages 170–184. 2011.

[P3] Andreas Harth and Sebastian Speiser. On Completeness Classes for

Query Evaluation on Linked Data. In Proceedings of the 26th Confer-

ence on Artificial Intelligence (AAAI). 2012.

[P4] Anisa Rula, Matteo Palmonari, Andreas Harth, Steffen Stadtmüller,

and Andrea Maurino. On the Diversity and Availability of Temporal

Information in Linked Open Data. In Proceedings of the 11th Interna-

tional Semantic Web Conference (ISWC), pages 492–507. 2012.

[P5] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi

Studer. Data-Fu: A Language and an Interpreter for Interaction with

Read/Write Linked Data. In Proceedings of the 22nd International

Conference on World Wide Web (WWW), pages 1225–1236. 2013.

[P6] Andreas Harth and Steffen Stadtmüller. Parallel Processing of Rule-

based Programs on Linked Data. 2015. Under review.

[P1] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe

Sattler, and Jürgen Umbrich. Data Summaries for On-demand Queries

over Linked Data. In Proceedings of the 19th International Conference

on World Wide Web (WWW), pages 411–420. 2010.

Data Summaries for On-Demand Queries over Linked Data∗

Andreas Harth# , Katja Hose∗ , Marcel Karnstedt‡ , Axel Polleres‡ , Kai-Uwe Sattler† , Jürgen Umbrich‡

#AIFB, Karlsruhe Institute of Technology, Germany
∗Max-Planck Institute for Informatics, Saarbrücken, Germany

‡Digital Enterprise Research Institute, National University of Ireland, Galway
†Ilmenau University of Technology, Ilmenau, Germany

#
harth@kit.edu, ∗hose@mpi-inf.mpg.de, ‡firstname.lastname@deri.org, †kus@tu-ilmenau.de

ABSTRACT
Typical approaches for querying structured Web Data col-
lect (crawl) and pre-process (index) large amounts of data
in a central data repository before allowing for query an-
swering. However, this time-consuming pre-processing phase
however leverages the benefits of Linked Data – where struc-
tured data is accessible live and up-to-date at distributed
Web resources that may change constantly – only to a lim-
ited degree, as query results can never be current. An ideal
query answering system for Linked Data should return cur-
rent answers in a reasonable amount of time, even on corpora
as large as the Web. Query processors evaluating queries di-
rectly on the live sources require knowledge of the contents
of data sources. In this paper, we develop and evaluate an
approximate index structure summarising graph-structured
content of sources adhering to Linked Data principles, pro-
vide an algorithm for answering conjunctive queries over
Linked Data on the Web exploiting the source summary, and
evaluate the system using synthetically generated queries.
The experimental results show that our lightweight index
structure enables complete and up-to-date query results over
Linked Data, while keeping the overhead for querying low
and providing a satisfying source ranking at no additional
cost.

Categories and Subject Descriptors:
E.1[Data Structures]: Distributed Data Structures;
H.2.4[Database Management]: Systems—Distributed
Databases, Query Processing;

General Terms: Algorithms, Design, Performance

Keywords: Index Structures, Linked Data, RDF Querying

1. INTRODUCTION
The recent developments around Linked Data promise to

lead to the exposure of large amounts of data on the Se-
mantic Web amenable to automated processing in software
programs [1]. Linked Data sources use RDF (Resource De-
scription Format) in various serialisation syntaxes for encod-
ing graph-structured data. The Linked Data effort is part

∗This material is in parts supported by the Science Foun-
dation Ireland under Grant No. SFI/08/CE/I1380 (Lion-
2) and 08/SRC/I1407 (Clique) and the EU under projects
NeOn (IST-2006-027595) and ACTIVE (IST-2007-215040).
We thank Aidan Hogan for comments.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

of a trend towards highly distributed systems, with thou-
sands or potentially millions of independent sources provid-
ing small amounts of structured data. Using the available
data in data integration and decision-making scenarios re-
quires query processing over the combined data.

For evaluating queries in such environments we can dis-
tinguish two directions:

• data warehousing or materialisation-based approaches
(MAT), which collect the data from all known sources
in advance, preprocess the combined data, and store
the results in a central database; queries are evaluated
using the local database.

• distributed query processing approaches (DQP), which
parse, normalise and split the query into subqueries,
determine the sources containing results for sub-
queries, and evaluate the subqueries against the
sources directly.

Unfortunately, applying DQP directly is not a viable so-
lution for Linked Data sets: firstly, in most cases the data
in the different sources cannot be described by simple ex-
pressions because they may vary in the schema or do not
even have common values. Secondly, queries cannot be “dis-
patched”, unless query processing capabilities exist at the
source sites. Preliminary results for distributed query pro-
cessing over distributed RDF sources [25] assume, similar to
resp. approaches from the traditional database works, rela-
tively few query endpoints with probably huge amounts of
data, rather than many small Web resources accessible via
simple HTTP GET only.

The aim of the present paper is to narrow the gap be-
tween these two extreme approaches and find a reason-
able middle-ground for processing queries over Linked Data
sources directly. Although currently only a few data sources
offer full query processing capabilities (e.g., by implementing
SPARQL [4, 24], a query language and protocol for RDF),
we still can eschew the cost of maintaining a full index of
the data at a central location. On the current Web, all we
can assume is that the sources implement a single opera-
tion GET which returns the content of the source in RDF.
Thus, instead of full federation we propose an approximate
multidimensional indexing structure (a QTree [14]) to store
descriptions of the content of data sources. The QTree forms
the basis for sophisticated query optimisation and helps the
query processor decide on which sources to route a query
or a subquery. We assume – as typical for Linked Data – a
large number of sources, which, in contrast to classic data
integration scenarios, are of small size in the range of a few
kilobytes to megabytes.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

411

Approximate data summaries such as QTrees can be pop-
ulated by crawling techniques similar to those employed
by centralised systems, with the advantage of a signifi-
cantly smaller index, which can be kept in memory, and live
query results, by processing the actual query only over those
sources which likely contain relevant information. Also, such
a QTree index can be dynamically extended, by adding ei-
ther user-submitted sources or sources discovered during
query processing.

The strategy we propose is a reasonable compromise un-
der the assumption that the overall data distribution does
not change dramatically over time: that is, the distribution
characteristics are relatively stable, which holds for a wide
range of Linked Data sources (e.g., DBpedia1, DBLP2, or
machine-readable personal homepages). Under this assump-
tion we can employ an approach which stores a data sum-
mary reflecting these immutable characteristics in lieu of a
full local data index.

Our approach works as follows:
• prime an approximate index structure (a QTree) with

a seed data set (various mechanisms for creating and main-
taining the index are covered in Section 4);

• use the QTree to determine which sources contribute
partial results for a conjunctive SPARQL query Q;

• fetch the content of the sources (optionally using only
the top-k sources according to cardinality estimates stored
in the QTree) into memory;

• perform join processing locally, given that remote
sources do not provide functionality for computing joins.

The main problems of processing such queries hence be-
come i) finding the right sources to contain possible answers
that can contribute to the overall query and ii) efficient par-
allel fetching of content from these sources.

We conclude this section by introducing example data and
queries used throughout the paper. Section 2 discusses alter-
native methods for answering queries over Linked Data. In
Section 3, we present an approach to select sources from
a QTree.Section 4 describes approaches to construct and
maintain these data summaries followed by a discussion of
the results of an evaluation in Section 5. In Section 6, we
align our system with existing work and conclude with an
outlook to future work in Section 7.

Example. As an example consider a scenario in which
sources publish interlinked data about people, the relations
between them and their publications. Such data is indeed
available as Linked Data in RDF on the Web in the form of
hand-crafted files in the Friend-of-a-Friend (FOAF) vocabu-
lary [2] and automatic exports of publication databases such
as DBLP.

For instance, consider the Linked Data sources depicted
in Figure 1. RDF graphs comprise of (subject predicate ob-

ject) triples that denote labelled edges between the sub-
ject and the object. The figure shows five RDF graphs
covering data about Andreas and Axel: personal home-
pages encoded in FOAF, data covering personal informa-
tion and one of their joint publications at DBLP. We as-
sume that namespace:localname pairs expand to full URIs,
e.g., dblp:Axel_Polleres expands to http://dblp.l3s.de/
d2r/resource/authors/Axel_Polleres.

1http://dbpedia.org/
2http://dblp.l3s.de/d2r/

Conjunctive SPARQL queries3 consist of so-called basic
graph patterns (BGPs), i.e., sets of triple patterns containing
variables. For instance, the following query asks for names
of Andreas’ friends:

SELECT ?n WHERE {
andreas:foaf#ah foaf:knows ?f. ?f foaf:name ?n. }

(1)

The next query asks for authors of article dblppub:

HoganHP08 who mutually know each other:

SELECT ?x1 ?x2 WHERE {
dblppub:HoganHP08 dc:creator ?a1, ?a2.
?x1 owl:sameAs ?a1. ?x2 owl:sameAs ?a2.
?x1 foaf:knows ?x2. ?x2 foaf:knows ?x1. }

(2)

2. QUERYING LINKED DATA
Linked Data [1] is RDF published on the Web accord-

ing to the following principles: 1) use URIs as names for
things 2) use (dereferenceable) HTTP URIs, 3) provide use-
ful content at these URIs encoded in RDF, and 4) include
links to other URIs for discovery. In the same way the cur-
rent Web is formed by HTML documents and hyperlinks
between documents, the Linked Data Web is constructed
by using HTTP URIs (principle 1 and 2). Principle 3 –
providing meaningful content for dereferenced URIs (that
is, RDF triples describing the URI, typically in the sub-
ject position) – allows for a new way of performing lookups
on the data during query runtime. The principle provides
a correspondence (in URI syntax or via redirects in the
HTTP protocol) between a URI of a resource and the data
source. For example, the resource URI http://dblp.l3s.

de/d2r/resource/authors/Axel_Polleres redirects to the
source URI http://dblp.l3s.de/d2r/page/authors/Axel_
Polleres. Finally, reusing URIs across sources (principle 4)
makes sure that data covering the same entity can be col-
lated from multiple sources.

Most current approaches enabling query processing over
RDF data operate very much along the lines of relational
data warehouses or search engines; Semantic Web search
engines [3,6,13,21] crawl large amounts of RDF documents
for materialisation and indexing in a centralised data store.

The centralised approaches using materialisation (MAT)
provide excellent query response times due to the large
amount of preprocessing carried out during the load and in-
dexing steps, but suffers from a number of drawbacks. First,
the aggregated data is never current as the process of collect-
ing and indexing vast amounts of data is time-consuming.
Second, from the viewpoint of a single requester with a par-
ticular query, there is a large amount of unnecessary data
gathering, processing, and storage involved since a large por-
tion of the data might not be used for answering that partic-
ular query. Furthermore, due to the replicated data storage,
the data providers have to give up their sole sovereignty on
their data (e.g., they cannot restrict or log access any more
since queries are answered against a copy of the data).

On the other end of the spectrum, there are approaches
that assume processing power attainable at the sources
themselves (DQP), which could be leveraged in parallel
for query processing. Such distributed or federated ap-
proaches [11] offer several advantages: the system is more
dynamic with up-to-date data and new sources can be added

3We focus on the core case of conjunctive queries and do not
consider more complex features such as unions, outer joins,
or filters available in SPARQL, which could be layered on
top of conjunctive query functionality.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

412

axel:foaf.rdf#me dblp:Axel_Polleres

axel:foaf.rdf

owl:sameAs

"Axel Florian
Polleres"

foaf:name

andreas:foaf#ah dblp:Andreas_Harth

"Andreas Harth"

owl:sameAs

foaf:knows

foaf:knows

dblppub:HoganHP08

"SAOR: Authoritative
Reasoning for the Web"

dc:titledc:creator

dc:creator dc:creator...

dblp:HoganHP08
foaf:name

"Axel Polleres"

foaf:name

"Andreas Harth"

foaf:name

andreas:foaf.rdf

dblp:Axel_Polleres

dblp:Andreas_Harth

dc:creator

...

...

foaf:knows

foaf:knows

rdf:type

foaf:Person

rdf:type

rdf:typerdf:type

Figure 1: Linked Data in RDF about persons and their publications

easily without time lag for indexing and integrating the data,
and the systems require less storage and processing resources
at the query issuing site. The potential drawback, however,
is that DQP systems cannot give strict guarantees about
query performance since the integration system relies on a
large number of potentially unreliable sources. DQP is a
well-known database problem [17]. Typically, DQP involves
the following steps for transforming a high-level query into
an efficient query execution plan: parsing, normalising by ap-
plication of equivalence rules, unnesting and simplification
of the query, data localisation, optimisation (i.e., replacing
the logical query operators by specific algorithms and access
methods as well as by determining the order of execution
both at a global and local level), and finally execution. Be-
sides optimisation, data localisation is an important step
that affects the efficiency of the execution. The goal of data
localisation – also known as source selection – is to iden-
tify the source sites that possibly provide results for the
given query or, in other words, to eliminate sites from the
query plan that do not contribute to the result. In classic
distributed databases this step is supported by (query or
view) expressions describing the fragmentation of a global
table.

Possible approaches to evaluate queries over such Web re-
sources and particularly addressing the problem of source
selection are:

• Direct Lookups (DL) The direct lookup approach
is implemented in [10] where one tries to leverage the cor-
respondence between source addresses and identifiers con-
tained in the sources to answer queries. The query pro-
cessor performs lookups on the sources that contain iden-
tifiers mentioned in the query or are retrieved in subsequent
steps. To answer query (1) of Section 1, one could fetch con-
tent from andreas:foaf#ah, dereference foaf:knows links,
and gather new information where hopefully the respective
names of friends are found. The sources in the DBLP realm
are irrelevant for answering this query. However, the strategy
fails to find the solutions for query (2) since the necessary
owl:sameAs links come from outside the linked closure of
the graph dblppub:HoganHP08. Apart from possible incom-
pleteness issues, the approach also has limitations in the
sense that only limited parallelisation is possible: the query
processor starts with one source and iteratively performs
more lookups on sources determined by intermediate results

rather than looking up the entire list of relevant sources in a
single pass. On the positive side, if one can live with partial
results this approach has no need for maintaining indexes
since only the correspondence between source and contained
identifiers is used.

• Schema-Level Indexes (SLI) A second approach,
mainly based on distributed query processing, relies on
schema-based indexes [7, 26]. The query processor keeps
an index structure with properties (i.e., predicates) and/or
classes (i.e., objects of rdf:type triples) that occur at cer-
tain sources, and uses that structure to guide query pro-
cessing. Using such schema-based indexes the incomplete-
ness problem of direct lookups is alleviated while only using
lightweight index structures. The drawback is that instance-
level descriptions are missing: i.e., i) only queries which con-
tain schema-level elements can be answered, and ii) on very
commonly used properties (e.g., foaf:knows, foaf:name),
this index selects a (possibly too) large portion of all possi-
ble sources.

• Data Summaries (DS) A third approach, and the one
we are advocating in this paper, uses a combined descrip-
tion of instance- and schema-level elements to summarise the
content of data sources. We cannot keep every data item in
this index, so we use a summarising index – a data summary
– which represents an approximation of the whole data set.
The DS approach uses more resources than the schema-level
indexes, however, adds the ability to cover also query pat-
terns including instance-level queries. Since the DS return
sources which possibly contain answers to a query directly
(i.e., taking joins into account), this approach may be viewed
as subsuming both direct lookups and schema-level indexes.
Further, a data summary index can be updated incremen-
tally as the query processor obtains new or updated infor-
mation about sources.

3. SOURCE SELECTION USING DATA
SUMMARIES

Our main idea for identifying relevant sources is to index
RDF triples provided by the sources by first transforming
them into a numerical data space (applying hash functions)
and then indexing the resulting data items with a data sum-
mary. In our work, we use an index structure called QTree –
originally developed for top-k query processing [14,15,27] –

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

413

as our data summary. In the following, we describe the ba-
sic principles of this structure as well as its usage for source
selection.

3.1 Source Indexing using the QTree
In principle, the QTree (Figure 2) is a combination of

histograms and R-trees [8] inheriting the benefits of both
data structures: indexing multidimensional data, capturing
attribute correlations, dealing with sparse data, offering ef-
ficient look-ups, and supporting incremental construction
and maintenance. Like the R-tree, a QTree is a tree struc-
ture consisting of nodes defined by minimal bounding boxes
(MBBs). These MBBs describe multidimensional regions in
the data space and MBBs of all nodes always cover all MBBs
of their children and the subtrees rooted by them. Because
R-trees are used to manage data items, leaf nodes in R-trees
contain the data items that are contained in their MBBs.
However, for our purposes we cannot hold detailed informa-
tion about all data items. Rather, we have to reduce memory
consumption by approximating this information.

(a) Data and Regions (b) Hierarchy

Figure 2: Two-dimensional QTree example

Thus, to limit memory and disk consumption, we replace
subtrees with special nodes called buckets. Buckets corre-
spond to histogram buckets or bins and are always leaf nodes
in the QTree – and leaf nodes are always buckets. Data items
are represented by the buckets in an approximated version.
Since the construction of the QTree aims at grouping data
items with similar hash values into the same bucket, we can
use the MBBs as a good basis for approximation. As men-
tioned above, in our case data items are points in the multi-
dimensional space whose coordinates are obtained by apply-
ing hash functions to the individual components (S, P, O) of
RDF triples. These components correspond to dimensions
in a three-dimensional QTree.

Only buckets contain statistical information about the
data items contained in their MBBs. In principle, a
bucket might hold any kind of statistics, but for the
purpose of this work we consider buckets capturing the
count of data items contained in their MBBs. Each
bucket stores the number of triples whose values (subject
predicate object) are mapped onto coordinates that are
part of the bucket’s MBB – the MBB being defined by
[S.low, S.hi], [P.low, P.hi], [O.low, O.hi].

The total number of buckets, as well as the size of a QTree,
can be controlled by two parameters: i) bmax denoting the
maximum number of buckets in the QTree and thus limit-
ing memory consumption, ii) fmax describing the maximum
fanout (i.e., the number of child nodes) for each non-leaf
node. Note that the size of a QTree only depends on these
two parameters and is independent from the number of rep-
resented data items.

Details on constructing and maintaining a QTree are be-

yond the scope of this paper. Thus, in the following we
only sketch the basic idea and refer the interested reader
to [15]. The QTree is constructed incrementally by inserting
one data item after another. For each data item p, we first
check whether it can be added to an existing bucket that
encloses p’s coordinates. In this case, the bucket statistics
are updated by incrementing the number of contained data
items. Otherwise, we traverse the QTree beginning at the
root node in each level looking for a node whose MBB com-
pletely encloses p. Once we have arrived at a node whose
children’s MBBs do not contain p, we create a new bucket
for p and insert it as a new child node.

In order to enforce the two constraints bmax and fmax,
we have to merge buckets and child nodes if the number of
buckets in the QTree or the fanout of inner nodes violates the
constraints. For this purpose, we use a penalty function that
represents the approximation error caused by merging two
buckets and merge the pair of sibling buckets that minimises
the penalty. The expensive check of all pairs is avoided by
maintaining a priority queue.

To capture details on which RDF triples are provided by
which source, we store not only the number of data items
per bucket but also the URIs of sources whose triples are
represented by the bucket. Basically, there are two possible
approaches: i) we can simply keep a list SB of source URIs
and a bucket cardinality cB , or ii) we maintain the number
of triples cs

B in each bucket B per source s ∈ SB, i.e., each
bucket B contains a list of s, cs

B pairs. For ease of expla-
nation, in the following we stick to the first approach. In
Section 3.2.2, we pick up the second approach, as it allows
for a more sophisticated estimation of the number of results
a source contributes to.

3.2 Source Selection
Let us now discuss how to use the information provided by

the QTree to decide on the relevance of sources for answering
a particular query.

3.2.1 Triple Pattern Source Selection
As joins are expressed by conjunctions of multiple triple

patterns and associated variables, a prerequisite for join
source selection is the identification of relevant sources for a
given triple pattern.

To determine relevant sources we first need to identify
the region in data space that contains all possible triples
matching the pattern. Therefore, we need to convert a triple
pattern into a set of coordinates in data space, using the
same hash functions that we used for index creation, to ob-
tain coordinates for a given RDF triple. However, in con-
trast to obtaining hash values for RDF triples provided by
the sources, triple patterns of queries might contain vari-
ables. Because of these variables, in general we have to work
with regions instead of points. Thus, for each literal, blank
node or URI in a given triple pattern, we apply the hash
functions and use the obtained hash values as minimum and
maximum coordinates to define the queried region. For each
variable, we set the minimum and maximum coordinates to
the minimum/maximum possible hash values in the respec-
tive dimensions.

After having determined the queried region R, we only
need to find all buckets in the QTree that overlap R. As the
QTree – similar to the R-tree – has a hierarchical structure,
the lookup procedure follows similar rules: starting at the

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

414

root node we need to traverse child nodes if their MBBs
overlap R until we arrive at the buckets on leaf level.

After having identified all buckets with overlapping
MBBs, we determine the percentage of overlap with R. Let
size(R) denote the size of a region R, cB the number of data
items (cardinality) represented by bucket B and O the over-
lapping region of B and R. Then, the cardinality of O is

calculated as cB · size(O)
size(B)

. Based on the overlap, the bucket’s

source URIs, and the cardinality (i.e., the number of rep-
resented RDF triples) we can determine the set of relevant
sources and the expected number of RDF triples per source –
assuming that triples are uniformly distributed within each
bucket. Thus, the output of the source selection algorithm
is a set of buckets, each annotated with information about
the overlap with the queried region, source URIs, and the
associated cardinality.

3.2.2 Join Source Selection
In order to determine which sources provide relevant data

for a join query, we first need to separately consider the triple
patterns (BGPs) that a join query consists of. In principle,
we could return the union of all sources relevant for the indi-
vidual BGPs (Section 3.2.1) as the result of the join source
selection. However, it is likely that there are no join part-
ners for data provided by some of the sources, although they
match one BGP. Thus, we consider the overlaps between the
sets of obtained relevant buckets for the BGPs with respect
to the defined join dimensions and determine the expected
result cardinality of the join.

The crucial question is how we can discard any of the
sources relevant for single BGPs, i.e., identify them as irrel-
evant for the join. Unfortunately, if a bucket is overlapped,
we cannot omit any of the contributing sources, because we
have no information on which sources contribute to which
part of the bucket. To not miss any relevant sources, we can
only assume all sources from the original bucket to be rele-
vant. Sources can only be discarded if the entire bucket they
belong to is discarded, such as the smaller bucket for the
second BGP in Figure 3.

The result of a join evaluation over two BGPs is a set of
three-dimensional buckets. Joining a third BGP requires a
differentiation between the original dimensions, because the
third BGP can be joined with any of them. For instance, af-
ter a subject-subject join we have to handle two different ob-
ject dimensions; a join between two three-dimensional over-
lapping buckets results in one six-dimensional bucket with
an MBB that is equivalent to the overlap. In general, a join
between n BGPs results in a (3 · n)-dimensional join space.

Figure 3 illustrates the first step of join source selection
on example query (2) of the introduction, assuming that
the first join is processed over the triples for subject ?x1.
For illustration purposes, we only show subject and object
dimensions, as the predicate is fixed in both BGPs (i.e.,
the figures correspond to a slice of the three-dimensional
space). Figure 3 illustrates a bucket that corresponds to the
result of the source selection algorithm for the first BGP
and shows two buckets corresponding to the second BGP.
Both overlapping buckets are constrained by their overlap
in the join dimension, which is the subject dimension. Other
dimensions are not constrained. Thus, the shaded parts of
both buckets represent the result buckets of the join.

Figure 4 illustrates the next join for example query (2),
assuming that it is processed on ?x2 (object-subject join

Figure 3: QTree join between first and second BGP

between 2nd and 3rd BGP). Again, for illustration purposes,
we omit the predicate dimensions and show equal dimensions
on the same axis (slices of the six-dimensional space reduced
to the three shown dimensions).

Figure 4: QTree join with third BGP

Algorithm 1 sketches the whole algorithm for join source
selection. In general, source selection will result in multiple
buckets for each BGP. The overlap has to be determined
for the cross-product of all input buckets (lines 6 and 7).
We determine the buckets for each BGP separately and join
them afterwards (line 7), which allows us to use existing
methods for determining the overlap between the resulting
buckets.

The loop in line 5 shows that we process all joins sequen-
tially, storing the results in variables joini. We insert the
result buckets of join i into a new (3 · (i + 1))-dimensional
join space joini. Note that, after the first join, two of the
six dimensions are equal. Handling them separately is just
for ease of understanding and implementation. The ⊕ op-
erator in line 12 symbolises the operation of combining two
buckets while increasing the number of dimensions accord-
ingly: the three dimensions from OR are added to the 3 · i
dimensions of OL, together forming the 3 ·(i+1) dimensions
of the result bucket. The new cardinality cOR⊕OL

(line 11)
of the resulting bucket is determined using the percentage
of overlap for both buckets (cf. Section 3.2.1 and line 3)
and assuming uniform distribution in both buckets. The set
of relevant sources SOR⊕OL

is a union over the sets from
both buckets. Finally, joini serves as input for the next join
(line 6).

3.3 Source Ranking
As source selection is approximate, the set of relevant

sources will usually be overestimated, i.e., contain false pos-
itives. Please note that false negatives are impossible as we
consider all QTree buckets matching any part of the query.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

415

Input: Query q, QTree QT
Output: list of relevant sources

1 forall buckets B ∈ QT .getBuckets(q.BGP[0]) do
2 O = B.overlap(q.BGP[0]);

3 join0 .insert(O, cB · size(O)
size(B)

, SB);

end
5 for i = 1 to |q.BGP| − 1 do
6 forall buckets L ∈ joini−1 do
7 forall buckets R ∈ QT .getBuckets(q.BGP[i]) do
8 dL = q.joindim[i − 1]; dR = q.joindim[i];
9 if ∃OL = L[dL].overlap(R[dR]) then

10 OR = R[dR].overlap(L[dL]);
11 cOR⊕OL

=
cL·

size(OL)

size(L)
· cR·

size(OR)

size(R)

max (L[dL].hi−L[dL].low,R[dR].hi−R[dR].low)
;

12 joini.insert(OL ⊕OR, cOR⊕OL
,SL ∪ SR);

end
end

end
end

17 return
S

B∈join|q.BGP|−1
SB

Algorithm 1: identifyRelevantSources(Query, QTree)

Moreover, some queries may actually be answered by a large
set of sources, such that a focus on the most important ones
becomes important. Both issues suggest to introduce a rank-
ing for sources identified as being relevant for answering the
query. There are two different general approaches that could
be used to rank sources:

• external ranking: ranking based on an independent
or externally computed notion of the sources’ relevance;

• cardinality ranking: ranking based on cardinality.
External ranking may be based on data from external
sources (e.g. search engines, requiring additional costly
lookups) or may be computed locally. An advantage of cardi-
nality ranking is that we do not need any external data. All
necessary information is provided by the QTree buckets that
are obtained as a result from the join source selection algo-
rithm. The idea is to estimate the number of results Rs that
each source s ∈ S contributes to. The ranks are assigned to
sources according to the values of Rs in descending order.

Each QTree bucket B provides an estimated cardinality
cB and a list of associated sources SB. To obtain a ranking
value for a source (resembling its importance), we could sim-
ply assume uniform distribution and assign cB/|SB | to each
source of a bucket, while summing up over all buckets. In
early tests we recognised that this ranks sources very inac-
curately. A simple modification of the QTree, which results
in constant space overhead, is to record the cardinality cs

B

for each source contributing to a bucket separately. More
specifically, cs

B estimates the number of results in B that
source s contributes to, summed over all joined triples. Thus,
cB = (

P

s∈SB
cs
B)/jlB , where jlB represents the join level of

B (i.e., the number of BGPs that have been joined to form
one data item in B). This helps to overcome the assump-
tion of a uniform distribution in the bucket. The number of
results a source contributes to is determined as:

Rs =
P

B
cs
B

Algorithm 1 can be adapted by applying the formulas from
lines 3 and 11 separately for each source, while substituting
cB by cs

B , cL by cs
L and cR by cs

R.

This is still a rough approximation, but, as we show in Sec-
tion 5, it indicates the actual importance ranking of sources
in a satisfyingly accurate manner. The effect is grounded
in probability laws, by which the probability that a source
contributes to a fraction of a bucket (the region resulting
from the join overlap) increases with its total number of
data items in the bucket.

4. DATA SUMMARY CONSTRUCTION &
MAINTENANCE

With respect to construction and maintenance, we iden-
tify two main tasks, namely i) building an initial version
of a QTree (initial phase) and ii) expanding the index with
new information of sources (expansion phase). Once we have
an initial version, we can use SPARQL queries to further
explore new sources and expand the index in the expan-
sion phase. In the following, we briefly present different ap-
proaches for each of the two phases.

4.1 Initial Phase
The initial phase is an important task with high rele-

vance for queries and the expansion of the index. Once the
QTree contains the source summaries, SPARQL queries can
be evaluated against the index and the resulting relevant
documents for query answering can be retrieved from the
Web. Users can adjust and influence the completeness of
query results and the likelihood of discovering new interest-
ing sources in the expansion phase. If users want to guaran-
tee complete answers, they have to ensure that the QTree
contains all relevant sources for the query.

The selection of seed sources influences the ability to dis-
cover new and interesting sources in the expansion phase.
Let us assume the case that our data summary covers a sub-
graph containing only few incoming or outgoing links to the
rest of the global Linked Data Web. The lack of links to new
sources decreases the probability of further extending the in-
dex. On the other hand, selecting seed sources which provide
many links to other documents increases the chance of dis-
covering new sources. The selection of those well interlinked
sources can be done via sampling on a random walk over
the Linked Data graph or choosing the top ranked sources
of existing datasets.

In general, we identify two different approaches for the
initial phase:

• Pre-fetching The most obvious approach is to fetch
seed sources for the QTree from the Web using a Web
crawler. An advantage of this approach is that existing Web
crawling systems can be used to gather the seed URIs. The
QTree can be adjusted wrt. answer completeness and expan-
sion likeliness by specifying the crawl scope. In particular,
random walk strategies generally lead to representative sam-
ples of networks and thus result in seed sources that could
serve as good entry points to further discover interesting
sources [12]. The quality of query answers will depend on
the selection of the seed sources and depth/exhaustiveness
of the crawl.

• SPARQL queries The second approach is starting
with an empty QTree and using an initial SPARQL query
to collect the initial sources for the QTree build. The index
is expanded on further queries; cf. next subsection. Given a
SPARQL query, an agent iteratively fetches the content of
the URIs selected from bound variables of the query. At least

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

416

one dereferenceable URI in the SPARQL query is required
as a starting point. Thus, this may be regarded as starting
with the plain DL approach mentioned in Section 2.

The decision which strategy to choose strongly depends on
the application scenario and has to be chosen accordingly.

4.2 Expansion Phase
The second important phase is the expansion of the QTree

index. Given a SPARQL query, it is very likely that the ini-
tialised QTree may contain information about dereference-
able URIs that are not (yet) indexed. In this case, the QTree
should be updated with the newly discovered URIs to in-
crease the completeness of answer sets for the next time a
query is executed. Further, we distinguish between pushing
or pulling sources into the QTree:

• Push of sources is a passive approach to get new data
indexed into the QTree. With passive expansion we refer to
all methods that involve users or software agents notifying
the QTree about new sources. This can be done by either a
service similar to search engines’ ping services4 or by sub-
mitting the document directly.

• Pull of sources is an active approach to index new
data from the Web. One way to achieve this is to perform
lazy fetching during query execution. Lazy fetching refers to
the process of dereferencing all new URIs needed to answer a
query. This particularly fits well with an initial phase based
on SPARQL queries, as outlined above. The completeness of
queries and the possibility of expanding the QTree with new
sources depends on the initial query and can be expected to
increase gradually with more queries.

The latter sounds appealing since it solves the cold-start
problem elegantly, by performing a plain DL approach on
the first query and successively expanding the QTree with
more relevant sources. Note that this expansion could be in-
terleaved with prefetching one or two rounds further at each
new query, thus accelerating the expansion of the QTree.

Although construction and maintenance are important is-
sues that have to be dealt with in general, we neglect this
issue for the remainder of this paper and instead focus on
the problem of source selection.

5. EVALUATION
We now present experiments performed on a fixed crawl.

On the basis of a set of generated sample queries, we eval-
uate the performance for determining relevant sources on
the QTree and the time elapsed to evaluate the query in
memory. Accuracy and quality of the source selection are
evaluated on the basis of a benefit measure. Most important
for evaluating the practicability of the approach is to mea-
sure the impact of source ranking. We also simulate the DL
approach and compare it to our method. As the focus of this
work is on query processing, we only include basic measure-
ments for index build time; we use the on-disk storage space
requirements as a proxy for use of main memory.

We expect the QTree approach to be a lightweight but
efficient and effective method to limit the search for query
answers to only a subset of relevant sources. However, due
to its approximate character, source selection cannot be ab-
solutely accurate. For this we expect the introduced ranking
to be a well-suited method for directing search to the most

4such as for instance http://pingthesemanticweb.com/ or
Sindice [21]

relevant sources. In comparison to the DL approach, our
method should be capable of handling more types of queries
in reasonable time.

5.1 Setup
Using a breadth first crawl of depth four starting at

Tim Berners-Lee’s FOAF file5, we collected about 3 mil-
lion triples from about 16,000 sources. The data set rep-
resents a heterogeneous and well-linked collection of docu-
ments hosted on various domains and with different numbers
of RDF triples. Most of the sources are manually generated
by Semantic Web affiliated users and URIs are reused among
documents (e.g., DBpedia or publication/conference URIs).
All experiments are performed on a local copy of the gath-
ered data using Java 1.5 and a maximum of 3 GB main
memory.

We experimented with queries corresponding to two gen-
eral classes. The first class of sample query is star-shaped
queries with one variable at the subject position. The second
type of query is path queries with join variables at subject
and object positions. Figure 5 shows abstract representa-
tions of these query classes. The query classes of choice are
generally understood to be representative for real-world use
cases and are also used to evaluate other RDF query systems
(e.g., [20]).

Figure 5: Abstract illustration of used query classes

The star-shaped queries were generated by randomly pick-
ing a subject from the input data and arbitrarily selecting
distinct outgoing links. Then, we substituted the subject in
each BGP with a variable. Path queries were generated us-
ing a random walk approach. We randomly chose a subject
and performed a random walk of pre-defined depth to select
object URIs. The result of such a random walk was trans-
formed into a path-shaped join by replacing the connecting
nodes with variables.

Using these approaches, we generated from the data 100
queries for each query class containing one, two or three join
operations. We use P-n to denote path queries with n join
operations and S-n to denote star-shaped queries with n join
operations. BGP refers to queries containing only one BGP
and no joins. The figures show averages for all 100 queries in
a set. Error bars, if shown, represent minimal and maximal
values measured over all tests.

5.2 Results
Next, we present the results of our evaluation, starting

with results for index construction. The measured time to
insert one triple into the QTree is 4ms on average. The final

5http://www.w3.org/People/Berners-Lee/card

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

417

QTree requires a disk size of around 22 MB in serialised
form. As the original data is of size 561 MB, this corresponds
to a compression ratio of 96%. In the following, we present
the results of four different evaluation aspects: quality of
source selection, impact of ranking, query execution time,
and comparision with other approaches, and finally discuss
the results.

5.2.1 Quality of Source Selection
First, we show the quality achieved for source selection.

Based on the total number of sources T in the data, the
number of estimated sources E and the number of sources
R that are actually needed to answer a query, we calculate
the benefit 1.0− E

T
for all queries. The benefit measures the

number of sources that can be skipped in the query pro-
cess, compared to the näıve approach of simply querying
all known sources. In other words, the benefit gives an idea
pf how much we save: i.e., how many sources we can dis-
card from querying without missing results. Figure 6 shows
the benefit for various query types. We observe a benefit of
above 80% for the star-shaped queries, while for path queries
we achieve benefits of about 20%, 40% and 60%. The high
benefit shows that our approach is very well suited to prune
the search space of all sources. The difference between query
classes is due to the fact that star queries are answered by
significantly fewer sources than path queries, which usually
span a large number of documents. Thus, the benefit for
path queries cannot be as high as for star queries. However,
the number of possibly relevant sources can still be in the
thousands. This highlights the importance of an accurate
source ranking.

Figure 6: Benefit of source selection

5.2.2 Impact of Ranking
An accurate ranking scheme is mandatory in the presence

of a huge number of relevant sources. To show the impact
of the ranking, we measured how many result triples we can
determine and how many queries we can completely answer
when querying only top-k ranked sources. We show results
for reasonable values of k, namely 10, 50, 100 and 200. Fig-
ure 7 and 8 illustrate the results of this test. In addition,
Figure 9 shows the average maximal k that would be re-
quired to answer a query completely (i.e., to achieve 100%
in Figure 7). The figure further shows the number of actual
relevant sources. We can conclude that the introduced rank-
ing is powerful and important for practical applications. The

recall values for the plots in Figure 7 are above 50% for 4 out
of 7 tests with the top-200 sources. Inspecting the ratio of
completely answered queries for the query types, we observe
that the path queries dominate the star-shaped queries. This
is a nice complement to the higher benefit values for star-
shaped queries. Figure 9 shows that the absolute error in the
number of selected sources increases with the complexity of
queries.

Figure 7: Impact of ranking, recall of triples

Figure 8: Impact of ranking, answer completeness

Figure 9: Impact of ranking, maximal k

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

418

BGP S-1 P-1 S-2 P-2 P-3

Average 32.8% 20% - 9.64% - -
Maximum 100% 39.8% - 27.8% - -

Table 1: Completeness of results with the DL ap-
proach

5.2.3 Query Execution Time
A crucial aspect besides quality and benefit of the source

selection is runtime performance, i.e., the actual time needed
to answer queries. Figure 10 shows the average time required
to estimate relevant sources (qtree) and to actually evalu-
ate the query afterwards on the content stored in memory
(query). The average query time for all queries is below 10
seconds, with some outliers of maximum 100 seconds. This
difference in the query times results from the number of rel-
evant sources, which is in parts very high (according to the
QTree, but also the actual number of relevant sources for
some queries). Similar times can be observed for source se-
lection on the QTree; the difference here is also due to the
number of buckets that have to be checked while answering
single BGPs on the QTree, as query times increase with the
number of buckets. The shown query times underline the ap-
plicability and practicability of our approach for a real-world
application.

Figure 10: Query time

5.2.4 Comparison with Other Approaches
Finally, we compare our proposed solution with an alter-

native approach, namely the DL approach. We implemented
a local generalised version of the algorithm for a fair compar-
ison with our proposed solution. For comparison we emulate
the approach using the crawled local data. We cannot ex-
pect the results to be completely accurate since since the DL
approach performs, by design, live HTTP lookups. Despite
this difference, an evaluation based on crawl data reflects
the general limitations of the DL approach. Table 1 shows
that the DL approach is capable of returning results only for
star-shaped queries with less than 2 joins, for path queries
the DL approach returned no results.

5.3 Discussion
The evaluation shows that our novel approach is very

promising and practical for efficiently querying the Linked
Data Web. The problems of state-of-the-art solutions can be
eliminated successfully by the use of memory-efficient index

structures such as the QTree. As expected, this is only prac-
tical if an accurate ranking is applied. We were able to show
that even a straightforward cardinality-based ranking is well
suited to achieve this task. Our proposed solution is appli-
cable to real-world scenarios, given the presented index and
query times and the precision and impact of the top-k rank-
ing. A client, able to perform multithreaded lookups and set
up with an appropriate timeout for fetching the content of
the estimated sources, can answer queries with live results in
less then a minute using an index of 4% size of the original
data. Almost all of our expectations were met by the evalu-
ation. However, the precision of the QTree index is slightly
below our expectations and can benefit from optimisations.
In summary, the proposed approach represents a novel, effi-
cient and effective way of supporting source selection for live
queries over the Linked Data Web. It is in a state ready for
real-world applications, although the very promising results
can still be tuned.

6. RELATED WORK
An implementation of the näıve Data Lookup approach

– i.e., iterative query processing with dereferencing bound
URIs – has been recently presented by Hartig et al. [10].
As already sketched in Section 4, we believe our approach
can be viewed as fruitfully expanding and generalising the
straightforward approach towards more complete and versa-
tile query answering over Linked Data.

Database systems have exploited the idea of captur-
ing statistics about data for many years by using his-
tograms [16], primarily for selectivity and cardinality esti-
mates over local data.

The majority of work on distributed query optimisation
assumes a relatively small number of endpoints with full
query processing functionality rather than a possibly huge
number of flat file containing small amounts of data. Stuck-
enschmidt et al. [26] proposed an index structure for dis-
tributed RDF repositories based on schema paths (prop-
erty chains) rather than on statistical summaries of the
graph-structure of the data. RDFStats [18] aims at provid-
ing statistics for RDF data that can be used for query pro-
cessing and optimisation over SPARQL endpoints. Statistics
include histograms, covering e.g., subjects or data types,
and estimates cardinalities of selected BGPs and example
queries. The Vocabulary of Interlinked Datasets (voiD)6 is a
format for encoding and publishing statistics such as basic
histograms in RDF. The QTree contains more complete se-
lectivity estimates for all BGPs of distributed Linked Data
sources and the ability to estimate selectivity of joins.

A recent system using B+-trees to index RDF data is
RDF-3X [20]. To answer queries with variables in any posi-
tion of an RDF triple, RDF-3X holds indexes for querying
all possible combinations of subject, predicate and object –
an idea introduced in [9]. RDF-3X uses sophisticated join
optimisation techniques based on statistics derived from the
data. In contrast to our work, the approach uses a different
data structure for the index and focuses on centralised RDF
stores rather than distributed Linked Data sources.

Peer-to-peer systems (P2P) leverage statistical data for
source selection using so-called routing indexes. Crespo et
al. [5] introduced the notion of routing indexes in P2P sys-
tems as structures that, given a query, return a list of inter-

6http://rdfs.org/ns/void

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

419

esting neighbours (sources) based on a data structure con-
forming to lists of counts for keyword occurrences in doc-
uments. Based on this work, other variants of routing in-
dexes have been proposed, e.g., based on one-dimensional
histograms [22], Bloom Filters [23], bit vectors [19], or the
QTree. A common feature across these systems is to use a
hash function to map string data to a numerical data space.
In contrast to our work, the focus of query optimisation in
P2P systems is to share load among multiple sites and on
local optimisation based on routing indexes.

7. CONCLUSION & FUTURE WORK
We have presented an approach for evaluating queries over

RDF published as Linked Data, based on an index struc-
ture which summarises the content of data sources. We have
shown how the index structure can be used to select relevant
sources for conjunctive query answering, and how to process
joins over relevant sources with an optional prioritisation
via ranking. We have discussed strategies for constructing
such data summaries from a static dataset or dynamically
during query evaluation, and presented experimental results
and discussion of our approach on synthetically generated
queries over a Web crawl from 16k sources consisting of 3m
RDF triples. We have shown that our approach is able to
handle more expressive queries and return more complete
results to queries compared to previous approaches.

While our initial results are promising, there remain sev-
eral issues and future directions to explore. Restricting the
number of lookups via cardinality ranking reduces the over-
all processing time in our current approach. However, we
would like to investigate what types of ranking could be used
to further improve the accuracy of the lookups. In addition,
performing reasoning over the collected data would allow for
returning consistent results adhering to the specified seman-
tics. The current work describes the general applicability of
approximate index structures for query processing, however,
future work will have to study approaches for index creation
and maintenance in more detail. We plan to deploy a query
engine with a populated QTree for public user queries and
investigate how a QTree purely built on real user queries
evolves. Last but not least, we should highlight that QTrees
are also applicable in a fully decentralised distributed query-
ing scenario where peers are able to process and forward
queries themselves.

8. REFERENCES
[1] T. Berners-Lee. Linked data, July 2006.

http://www.w3.org/DesignIssues/LinkedData.html.

[2] D. Brickley, L. Miller. FOAF Vocabulary Spec. 0.91,
2007. http://xmlns.com/foaf/spec/.

[3] G. Cheng, Y. Qu. Searching linked objects with
falcons: Approach, implementation and evaluation.
JSWIS, 5(3):49–70, 2009.

[4] K. G. Clark, L. Feigenbaum, E. Torres. SPARQL
protocol for RDF, Jan. 2008. W3C Rec.,
http://www.w3.org/TR/rdf-sparql-protocol/.

[5] A. Crespo, H. Garcia-Molina. Routing indices for
peer-to-peer systems. ICDCS ’02, p.23–32, 2002.

[6] M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou,
M. Sabou, E. Motta. Characterizing knowledge on the
semantic web with watson. EON’07, p.1–10, 2007.

[7] R. Goldman, J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured
databases. VLDB’97, p.436–445, 1997.

[8] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. SIGMOD ’84, p.47–57, 1984.

[9] A. Harth, S. Decker. Optimized index structures for
querying RDF from the web. 3rd Latin American Web
Congress, p.71–80, 2005.

[10] O. Hartig, C. Bizer, J.-C. Freytag. Executing sparql
queries over the web of linked data. ISWC’09, 2009.

[11] D. Heimbigner, D. McLeod. A federated architecture
for information management. ACM Trans. Inf. Syst.,
3(3):253–278, 1985.

[12] M. R. Henzinger, A. Heydon, M. Mitzenmacher,
M. Najork. Measuring index quality using random
walks on the web. Computer Networks,
31(11-16):1291–1303, 1999.

[13] A. Hogan, A. Harth, J. Umbrich, S. Decker. Towards a
scalable search and query engine for the web.
WWW’07, p.1301–1302, 2007.

[14] K. Hose, M. Karnstedt, A. Koch, K. Sattler, D. Zinn.
Processing Rank-Aware Queries in P2P Systems.
DBISP2P’05, p.238–249, 2005.

[15] K. Hose, D. Klan, K. Sattler. Distributed Data
Summaries for Approximate Query Processing in
PDMS. IDEAS ’06, p.37–44, 2006.

[16] Y. Ioannidis. The History of Histograms (abridged).
VLDB ’03, p.19–30, 2003.

[17] D. Kossmann. The state of the art in distributed
query processing. ACM Computing Surveys,
32(4):422–469, Dec. 2000.

[18] A. Langegger, W. Wöß. RDFstats - an extensible
RDF statistics generator and library. 8th Int’l
Workshop on Web Semantics, DEXA, 2009.

[19] M. Marzolla, M. Mordacchini, S. Orlando. Tree Vector
Indexes: Efficient Range Queries for Dynamic Content
on Peer-to-Peer Networks. PDP’06, p.457–464, 2006.

[20] T. Neumann, G. Weikum. RDF-3X: a RISC-style
Engine for RDF. VLDB Endow., 1(1):647–659, 2008.

[21] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, G. Tummarello. Sindice.com: A
document-oriented lookup index for open linked data.
JMSO, 3(1), 2008.

[22] Y. Petrakis, G. Koloniari, E. Pitoura. On Using
Histograms as Routing Indexes in Peer-to-Peer
Systems. DBISP2P ’04, p.16–30, 2004.

[23] Y. Petrakis and E. Pitoura. On Constructing Small
Worlds in Unstructured Peer-to-Peer Systems. EDBT
Workshops, p.415–424, 2004.

[24] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF, Jan. 2008. W3C Rec.,
http://www.w3.org/TR/rdf-sparql-query/.

[25] B. Quilitz and U. Leser. Querying distributed RDF
data sources with SPARQL. ESWC’08, p.524–538,
Tenerife, Spain, 2008.

[26] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben,
J. Broekstra. Index structures and algorithms for
querying distributed RDF repositories. WWW’04,
p.631–639, 2004.

[27] D. Zinn. Skyline Queries in P2P Systems. Diploma
Thesis, TU Ilmenau, 2004.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

420

[P2] Sebastian Speiser and Andreas Harth. Integrating Linked Data and

Services with Linked Data Services. In Proceedings of the 8th Extended

Semantic Web Conference (ESWC), pages 170–184. 2011.

Integrating Linked Data and Services with
Linked Data Services ?

Sebastian Speiser and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany
lastname@kit.edu

Abstract. A sizable amount of data on the Web is currently available
via Web APIs that expose data in formats such as JSON or XML. Com-
bining data from different APIs and data sources requires glue code which
is typically not shared and hence not reused. We propose Linked Data
Services (LIDS), a general, formalised approach for integrating data-
providing services with Linked Data, a popular mechanism for data pub-
lishing which facilitates data integration and allows for decentralised pub-
lishing. We present conventions for service access interfaces that conform
to Linked Data principles, and an abstract lightweight service descrip-
tion formalism. We develop algorithms that use LIDS descriptions to
automatically create links between services and existing data sets. To
evaluate our approach, we realise LIDS wrappers and LIDS descriptions
for existing services and measure performance and effectiveness of an
automatic interlinking algorithm over multiple billions of triples.

1 Introduction

The trend towards publishing data on the Web is gaining momentum, particu-
larly spurred by the Linking Open Data (LOD) project1 and several government
initiatives aimed at publishing public sector data. Data publishers often use
Linked Data principles [3]. which leverage established Web standards such as
Uniform Resource Identifiers (URIs), the Hypertext Transfer Protocol (HTTP)
and the Resource Description Framework (RDF) [4]. Data providers can easily
link their data to data from third parties via reuse of URIs. The LOD project
proves that the Linked Data approach is, in principle, capable of integrating data
from a large number of sources. However, there is still a lot of data residing in
silos that could be beneficially linked with other data, but will not be published
as a fully materialised knowledge base. Reasons include:

– data is constantly changing, e.g., stock quotes or sensor data can have update
intervals below one second;

? This paper is an extension of our previous work [1, 2]. We have extended the work
with a formal definition of service descriptions, an evaluation of the performance
and effectiveness of the proposed methods – including the implementation of several
Linked Data Services – and an extensive overview of related work.

1 http://linkeddata.org/

– data is generated depending on possibly infinite different input data, e.g.,
the distance between two geographical points can be specified with arbitrary
precision;

– the data provider does not want arbitrary access to the data, e.g., prices of
flight tickets may be only available for specific requests in order to maintain
the possibility for price differentiation.

Such data is commonly provided via Web APIs or services, in the follow-
ing also called data or information services, as they provide a restricted view
on a possibly implicit data set. APIs are often based on Representational State
Transfer (REST) principles [5], use HTTP as transport protocol and pass pa-
rameters as name/value pairs in the URI query string. Currently deployed Web
APIs return data as JSON or XML, which requires glue code to combine data
from different APIs.

There are useful examples for the integration of information services and
Linked Data. Linked Data interfaces for services have been created, e.g., in form
of the book mashup [6] which provides RDF about books based on Amazon’s
API, or twitter2foaf, which encodes a Twitter follower network of a given user
based on Twitter’s API. However, the interfaces are not formally described and
thus the link between services and data has to be established manually or by
service-specific algorithms. For example, to establish a link between person in-
stances (e.g., described using the FOAF vocabulary2) and their Twitter account,
one has to hard-code which property relates people to their Twitter username
and the fact that the URI of the person’s Twitter representation is created by
appending the username to http://twitter2foaf.appspot.com/id/.

Vast amounts of idle data can be brought to the Semantic Web via a stan-
dardised method for creating Linked Data interfaces to services. The method
should incorporate formal service descriptions that enable (semi-)automatic ser-
vice discovery and integration. We present such an approach for what we call
LInked Data Services (LIDS). Specifically, we present the following contribu-
tions:

– an access mechanism for LIDS interfaces based on generic Web architecture
principles (URIs and HTTP) (Section 3);

– a generic lightweight data service description formalism, instantiated for
RDF and SPARQL graph patterns (Section 4);

– an algorithm for linking existing data sets using LIDS (Section 5)

In Section 6 we describe the creation of LIDS for existing services, and present
the results of an experiment measuring performance and effectiveness of the
approach. The experiment interlinks the 2010 Billion Triple Challenge data set
with a geographic LIDS. We relate our approach to existing work in Section 7
and conclude with Section 8.

2 http://xmlns.com/foaf/0.1/

2 Preliminaries

In the following we shortly present the basics for our work, namely: data services,
and RDF.

2.1 Data Services

Our notion of data services is as follows:

Data services return data dynamically derived (i.e., during service call time)
from supplied input parameters. Data services neither alter the state of
some entity nor modify data. In other words, data services are free of any
side effects. They can be seen as data sources providing information about
some entity, when given input in the form of a set of name/value pairs.
The notion of data services include Web APIs and REST-based services
providing output data in XML or JSON.

Data services are related to Web forms or the “Deep Web” [7], but take and
provide data rather than free text or documents. For example, the GeoNames
findNearbyWikipedia service relates given latitude/longitude parameters to
Wikipedia articles describing geographical features that are nearby.

API Format Description

GeoNames XML, JSON Functions include besides others: (i) find the
nearest GeoNames feature to a given point and
(ii) link a geographic point to resources from
DBpedia that are nearby
URL: http://www.geonames.org/

Google GeoCoding API XML, JSON Provides latitude and longitude for a given
street address.
URL: http://code.google.com/apis/maps/

Twitter API XML, JSON,
RSS, Atom

Various functions, giving access to Twitter
users, follower networks, and tweets.
URL: http://dev.twitter.com/

Table 1. Example data-providing services.

Example 1. In Table 1, we list some popular data-providing services. Taking
the Google GeoCoding API, to get the geographical coordinates for Karlsruhe,
we retrieve the URI http://maps.googleapis.com/maps/api/geocode/json?
address=Karlsruhe&sensor=false, with the following (abbreviated) result:

{ "status": "OK",

"results": [{

...

"formatted_address": "Karlsruhe, Germany",

...

"geometry": {

"location": {

"lat": 49.0080848,

"lng": 8.4037563

},

...

} }] }

Using the retrieved coordinates, we can build the URI for calling the GeoNames
service to find Wikipedia articles about things, that are nearby Karlsruhe:
http://ws.geonames.org/findNearbyWikipedia?lat=49.0080848&lng=8.4037563.
The (abbreviated) result is the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<geonames>

<entry>

<lang>en</lang>

<title>Federal Constitutional Court of Germany</title>

...

<lat>49.0125</lat>

<lng>8.4018</lng>

<wikipediaUrl>...</wikipediaUrl>

...

</entry>

<entry>

...

</entry>

</geonames>

This simple example shows that integrating data from several (in this case only
two) services is difficult for the following reasons:

– different serialisation formats are used (e.g., JSON, XML);

– entities are not represented explicitly, and are thus difficult to identify be-
tween different services. For example, the geographical point returned by
the GeoCoding API does not occur in the output of the GeoNames service.
Therefore it is not possible to link the results based on the service outputs
alone, but only with service-specific gluing code.

2.2 RDF and Basic Graph Patterns

In contrast to XML or JSON, the Resource Description Framework (RDF) is a
graph-based data format which allows for easy integration of data from multiple
sources. We now introduce basic RDF notions later reused in the paper; cf. [?].

Let U,B,L, V be disjoint infinite sets of URIs, blank nodes, literals and
variables.

Definition 1. (Triple) A triple t = (s, p, o) is a tuple of length three, t ∈ (U ∪
B)×U × (U ∪B ∪L). We often write t as s p o, where s is called the subject,
p the predicate and o the object.

Definition 2. (RDF Graph) An RDF graph r is a finite set of triples.

We often write a set of triples by separating triples by . (a dot). To be able
to query graphs, we introduce the notion of triple pattern which can include
variables.

Definition 3. (Triple Pattern) A triple pattern t ∈ (U ∪B∪V)×(U ∪V)×(U ∪
B ∪ L ∪ V) abstracts from single triples by allowing variables in every position.

Definition 4. (Basic Graph Pattern (BGP) and Conjunctive Query (CQ)) A
BGP is a finite set of triple patterns. A conjunctive query CQ = (X,T) consists
of a head, i.e. a set of variables X ⊂ V , and a body, i.e. a BGP T .

Let M be the set of all function µ : U ∪L∪ V → U ∪L, s.t. µ is the identity for
constants, i.e. ∀a : (a ∈ U ∪ L→ µ(a) = a). As an abbreviation we also apply a
function µ ∈M to a triple pattern t = p(t1, . . . , tn) (µ(t) = p(µ(t1), . . . , µ(tn))),
and to a BGP T (µ(T) = {µ(t) | t ∈ T}).

Definition 5. (Variable Binding) A function µ ∈M is a variable binding for a
conjunctive query CQ = (X,T) and a RDF graph r, if µ(T) ⊆ r. We denote the
set of all mappings for a CQ and a graph as MCQ(r) = {µ ∈M |µ(T) ⊆ r}.

3 Linked Data Services

Linked Data Services provide a Linked Data interface for data services. To make
these services adhere to Linked Data principles a number of requirements have
to be fulfilled:

– the input for a service invocation with given parameter bindings must be
identified by a URI;

– resolving that URI must return a description of the input entity, relating it
to the service output data;

– the description must be returned in RDF format.

We call such services Linked Data Services (LIDS).

Example 2. Inputs for the LIDS version of the findNearbyWikipedia service
are entities representing geographical points given by latitude and longitude,
which are encoded in the URI of an input entity. Resolving such an input URI
returns a description of the corresponding point, which relates it to Wikipedia
articles which are nearby.

Defining that the URI of a LIDS call identifies an input entity is an important
design decision. Compared to the alternative – directly identifying output entities
with service call URIs – identifying input entities has the following advantages:

– the link between input and output data is made explicit;
– one input entity (e.g., a geographical point) can be related to several results

(e.g., Wikipedia articles);
– the absence of results can be easily represented by an description without

further links;
– the input entity has a constant meaning although data can be dynamic (e.g.,

the input entity still represents the same point, even though a subsequent
service call may relate the input entity to new or updated Wikipedia articles).

More formally we characterise a LIDS by:

– Linked Data Service endpoint: ep, an HTTP URI.
– Local identifier i for the input entity of the service.
– Inputs Xi: names of parameters.

The URI of a service call for a parameter assignment µ (mapping Xi to corre-
sponding values) is constructed in the following way (where addition is under-
stood as string concatenation and subtraction removes the corresponding suffix
if it matches):

uri(ep,Xi, µ) = ep+ ”?” +
∑
x∈Xi

(x+ ”=” + µ(x) + ”&”)− ”&”

Additionally we introduce an abbreviated URI schema that can be used if there
is only one required parameter (i.e. |Xi| = 1, Xi = {x}):

uri(ep,Xi, µ) = ep+ ”/” + µ(x)

Please note that the above definition coincides with typical Linked Data URIs.
The input entity described by the output of a service call is defined as inp(ep,Xi, µ, i) =
uri(ep,Xi, µ) + ”#” + i.

Example 3. We illustrate the principle using the openlids.org wrapper for GeoNames3

findNearbyWikipedia. The wrapper is a LIDS, defined by:

– endpoint ep = gw:findNearbyWikipedia;
– local identifier i = ”point”;
– inputs Xi = {”lat”, ”lng”}.

For a binding µ = {lat 7→ 49.01, lng 7→ 8.41} the URI for the service call is gw:

findNearbyWikipedia?lat=49.01&lng=8.41 and returns the following description:

@prefix dbpedia: <http://dbpedia.org/resource/> .

gw:findNearbyWikipedia?lat=49.01&lng=8.41#point

foaf:based_near dbpedia:University_of_Karlsruhe_%28TH%29;

foaf:based_near dbpedia:Federal_Constitutional_Court_of_Germany;

foaf:based_near dbpedia:Federal_Court_of_Justice_of_Germany;

foaf:based_near dbpedia:Wildparkstadion;

foaf:based_near dbpedia:Karlsruhe.

3 http://km.aifb.kit.edu/services/geowrap/, abbreviated as gw.

4 Describing Linked Data Services

In this section, we define an abstract model of LIDS descriptions.

Definition 6. (LIDS Description) A LIDS description consists of a tuple
(ep, CQi, To, i) where ep denotes the LIDS endpoint, CQi = (Xi, Ti) a conjunc-
tive query to specify the input to the service, To a basic graph pattern describing
the output data of the service, and i the local identifier for the input entity.

The meaning of ep and Xi were already explained in the previous section. We
define Xi to be the head of a conjunctive query, whose body specifies the required
relation between the input parameters. To specifies the minimum output that is
returned by the service for valid input parameters. More formally:

– µ ∈ M is a valid input, if µ ∈ MCQi
(r), where r is the implicit RDF graph

given by all Linked Data;
– for a valid µ, resolving uri(ep,Xi, µ) returns a graph
Do ⊇ {T ′ ⊆ Dimpl | ∃µ ∈ M : µ(i) = Es ∧ µ(To) = T ′}, where Dimpl is the
implicit, potentially infinite data set representing the information provided
by the LIDS.

Example 4. We describe the findNearbyWikipedia openlids.org wrapper ser-
vice as (ep, CQi, To, i) with:
ep = gw:findNearbyWikipedia

CQi = ({lat,lng}, { ?point geo:lat ?lat . ?point geo:long ?lng })
To = {?point foaf:based_near ?feature}
i = point

4.1 Relation to Source Descriptions in Information Integration
Systems

Note that the LIDS descriptions can be transformed to source descriptions with
limited access patterns, in a Local-as-View (LaV) data integration approach [8].
With LaV, the data accessible through a service is described as a view in terms
of a global schema. The variables of a view’s head predicate that have to be
bound in order to retrieve tuples from the view are prefixed with a $. For a
LIDS description (ep, CQi, To, i), we can construct the LaV description:

ep($I1, . . . , $Ik, O1 . . . , Om) :- pi1(. . .), . . . , pin(. . .), po1(. . .), . . . , pol (. . .).

Where CQi = (Xi, Ti), Xi = {I1, . . . , Ik}, Ti = {(si1, pi1, oi1), . . . , (sin, p
i
n, o

i
n)},

To = {(so1, po1, oo1), . . . , (sol , p
o
l , o

o
l)}, and vars(To) \ vars(Ti) = {O1, . . . , Om}.

We propose for LIDS descriptions the separation of input and output condi-
tions for three reasons: (i) the output of a LIDS corresponds to an RDF graph
as described by the output pattern, not to tuples as it is common in LaV ap-
proaches, (ii) it is easier to understand for users, and (iii) it is better suited for
the interlinking algorithm as shown in Section 5.

4.2 Describing LIDS using RDF and SPARQL Graph Patterns

In the following we present how LIDS descriptions can be represented in RDF,
thus enabling that LIDS descriptions can be published as Linked Data. The
basic format is as follows (unqualified strings consisting only of capital letters
are placeholders and explained below):

@prefix lids: <http://openlids.org/vocab#>

LIDS a lids:LIDS;

lids:lids_description [

lids:endpoint ENDPOINT ;

lids:service_entity ENTITY ;

lids:input_bgp INPUT ;

lids:output_bgp OUTPUT ;

lids:required_vars VARS

] .

The RDF description is related to our abstract description formalism in the
following way:

– LIDS is a resource representing the described Linked Data service;
– ENDPOINT is a URI corresponding to ep;
– ENTITY is the name of the entity i;
– INPUT and OUTPUT are basic graph patterns encoded as a string using SPARQL

syntax. INPUT is mapped to Ti and OUTPUT is mapped to To.
– VARS is a string of required variables separated by blanks, which is mapped

to Xi.

From this mapping, we can construct an abstract LIDS description (ep, (Xi, Ti), To, i)
for the service identified by LIDS.

Example 5. In the following we show the RDF representation of the formal LIDS
description from Example 4:

:GeowrapNearbyWikipedia a lids:LIDS;

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/geowrap/findNearbyWikipedia>;

lids:service_entity "point" ;

lids:input_bgp "?point a Point . ?point geo:lat ?lat .

?point geo:long ?long" ;

lids:output_bgp "?point foaf:based_near ?feature" ;

lids:required_vars "lat long"

] .

In future, we expect a standardised RDF representation of SPARQL, which does
not rely on string encoding of basic graph patterns. One such candidate is the

SPIN SPARQL Syntax4, which is part of the SPARQL Inferencing Notation
(SPIN)5. We are planning to reuse such a standardised RDF representation of
basic graph patterns and variables in future versions of the LIDS description
model.

5 Algorithm for Interlinking Data with LIDS

In the following, we describe how existing data sets can be automatically enriched
with links to LIDS, which can happen in different settings. Consider for example:

– processing of a static data set, inserting links to LIDS and storing the new
data;

– an endpoint that serves data (e.g., a Linked Data server), and dynamically
adds links to LIDS;

– a data browser that locally augments retrieved data with data retrieved from
LIDS.

We present an algorithm that, based on a fixed local dataset, determines and
invokes the appropriate LIDS and adds the output to the local dataset.

Given an RDF graph r and a LIDS description l = (ep, CQi, To) the following
formula defines a set of entities in r and equivalent entities that are inputs for
the LIDS (i is determined from Ti and To and + is again string concatenation):

equivsr,l =
{(
µ(i), uri(ep,Xi, µ) + ”#” + i

)
| µ ∈MCQi(r)}

}
.

The obtained equivalences can be either used to immediately resolve the
LIDS URIs and add the data to r, or to make the equivalences explicit in r, for
example, by adding the following triples to r:{

x1 owl:sameAs x2 | (x1, x2) ∈ equivsr,l
}
.

Based on the services shown in Figure 1 together with descriptions, we illus-
trate the algorithm using the following example: consider as starting point an
entity URI (e.g., an entity #aifb), which, when visited, returns an RDF graph
with latitude and longitude properties:

#aifb

rdfs:label "AIFB - Building 11.40";

geo:lat "49.01";

geo:long "8.41".

In the first step, the data is matched against the available LIDS descriptions
(for brevity we assume a static set of LIDS descriptions) and a set of bindings
are derived. Further processing uses the GeoNames LIDS which accepts lati-
tude/longitude as input. After constructing a URI which represents the service
entity, an equivalence (owl:sameAs) link is created between the original entity
#aifb and the service entity:

4 http://spinrdf.org/sp.html
5 http://spinrdf.org/

Retrieve
Data

Add Data
to DS

Interlink
LIDS

Add Links
to DS

Data Set (DS)

Web

#aifb

8.41 49.01

latlong

...?lng=8.41&
lat=49.01#point

owl:sameAs

dbp:KIT

dbp:Karlsruhe

based_near

GeoNames
LIDS Desc

GeoCoder
LIDS Desc

Twitter
LIDS Desc

Fig. 1. Interlinking example for GeoNames LIDS

#aifb owl:sameAs

gw:findWikipediaNearby?lat=49.01&long=8.41#point.

Next, the data from the service entity URI can be retrieved, to obtain the fol-
lowing data:

@prefix dbpedia: <http://dbpedia.org/resource/> .

gw:findWikipediaNearby?lat=49.01&long=8.41#point

foaf:based_near foaf:based_near dbpedia:Wildparkstadion;

foaf:based_near dbpedia:Karlsruhe.

...

Please observe that by equating the URI from the input data with the LIDS
entity URI, we essentially add the returned foaf:based_near statements to
#aifb. Should the database underlying the service change, a lookup on the
LIDS entity URI returns the updated data which can then be integrated. As
such, entity URIs can be linked in the same manner as plain Linked Data URIs.

6 Evaluation of Performance and Effectiveness

We first present several LIDS services which we have made available, and then
cover the evaluation of performance and effectiveness of the presented algorithm.
Source code and test data for the implementation of the interlinking algorithm,
as well as other general code for handling LIDS and their descriptions can be

found online6. All experiments were conducted on a 2.4 GHz Intel Core2Duo
laptop with 4 GB of main memory.

6.1 Implemented LIDS Services

In this section, we show how we applied the LIDS approach to construct publicly
available Linked Data interfaces for selected existing services.

The following services are hosted on Google’s App Engine cloud environment.
The services are also linked on http://openlids.org/ together with their for-
mal LIDS descriptions and further information, such as URIs of example entities.

– GeoNames Wrapper7 provides three functions:
• finding the nearest GeoNames feature to a given point,
• finding the nearest GeoNames populated place to a given point,
• linking a geographic point to resources from DBpedia that are nearby.

– GeoCoding Wrapper, returning the geographic coordinates of a street ad-
dress.

– Twitter Wrapper8 links Twitter account holders to the messages they post.

The effort to produce a LIDS wrapper is typically low. The interface code
that handles the service URIs and extracts parameters can be realised by stan-
dardised code or even generated automatically from a LIDS description. The
main effort lies in accessing the service and generating a mapping from the ser-
vice’s native output to a Linked Data representation. While for some services
it is sufficient to write a simple JavaScript wrapper that transforms JSON data
into RDF/N3, other services require simple Java procedures or XSLTs trans-
forming output XML data to RDF/XML. Effort is higher for services that map
Web page sources, as this often requires session and cookie handling and parsing
of faulty HTML code. However, the underlying data conversion has to be carried
out whether or not LIDS are used. Following the LIDS principles is only a minor
overhead in implementation; adding a LIDS descriptions requires a SPARQL
query to describe the service.

6.2 Interlinking Existing Data Sets with LIDS

We implemented a streaming version of the interlinking algorithm shown in
Section 5 based on NxParser9. For evaluation of the algorithm’s performance and
effectiveness we interlinked the Billion Triple Challenge (BTC) 2010 data set10

with the findNearby geowrapper. In total the data set consisted of 3,162,149,151
triples and was annotated in 40,746 seconds (< 12 hours) plus about 12 hours
for uncompressing the data set, result cleaning, and statistics gathering. In the

6 http://code.google.com/p/openlids/
7 http://km.aifb.kit.edu/services/geowrap/
8 http://km.aifb.kit.edu/services/twitterwrap/
9 http://sw.deri.org/2006/08/nxparser/

10 http://km.aifb.kit.edu/projects/btc-2010/

cleaning phase we filtered out links to the geowrapper that were redundant, i.e.,
entities that were already linked to GeoNames, including the GeoNames data
set itself. The original BTC data contained 74 different domains that referenced
GeoNames URIs. Our interlinking process added 891 new domains that are now
linked to GeoNames via the geowrap service. In total 2,448,160 new links were
added11. Many links referred to the same locations, all in all there were links
to ca. 160,000 different geowrap service calls. These results show that even with
a very large data set, interlinking based on LIDS descriptions is feasible on
commodity hardware. Furthermore, the experiment showed that there is much
idle potential for links between data sets, which can be uncovered with our
approach.

7 Related Work

Our work provides an approach to open up data silos for the Web of Data. Previ-
ous efforts in this direction are confined to specialised wrappers, for example the
book mashup [6]. Other state-of-the-art data integration systems [9] use wrap-
pers to generate RDF and then publish that RDF online rather than providing
access to the services that generate RDF directly. In contrast to these ad-hoc
interfaces, we provide a uniform way to construct such interfaces, and thus our
work is applicable not only to specific examples but generally to all kinds of
data silos. Furthermore, we present a method for formal service description that
enables the automatic interface generation and service integration into existing
data sets.

SILK [10] can be used to discover links between Linked Data from different
sources. Using a declarative language, a developer specifies conditions that data
from different sources has to fulfill to be merged, optionally using heuristics in
case merging rules can lead to ambiguous results. In contrast, we use Linked
Data principles for exposing content of data-providing services, and specify the
construction of URIs which can be related to already existing data.

There exists extensive literature about semantic descriptions of Web services.
We distinguish between two kinds of works: (i) general semantic Web service
(SWS) frameworks, and (ii) stateless service descriptions.

General SWS approaches include OWL-S [11] and WSMO [12] and aim at
providing extensive expressivity in order to formalise every kind of Web service,
including complex business services with state changes and non-trivial choreogra-
phies. The expressivity comes at a price: SWS require complex modeling even
for simple data services using formalisms that are not familiar to all Semantic
Web developers. In contrast, our approach focuses on simple data services and
their lightweight integration with Linked Data.

Most closely related to our service description formalism are works on se-
mantic descriptions of stateless services (e.g., [13–15]). Similar to our approach
these solutions define service functionality in terms of input and output condi-
tions. Most of them, except [13], employ proprietary description formalisms. In

11 Linking data is available online: http://people.aifb.kit.edu/ssp/geolink.tgz

contrast, our approach relies on standard SPARQL. Moreover, our work pro-
vides the following key advantages: (i) a methodology to provide a Linked Data
interface to services, (ii) semi-structured input and output definitions, compared
to the static definition of required inputs and outputs in previous approaches.

Norton and Krummenacher propose an alternative approach to integrate
Linked Data and services, so-called Linked Open Services (LOS) [16]. LOS de-
scriptions also use basic graph patterns for defining service inputs and outputs.
In contrast to our work, LOS consume Linked Data instead of literals and URIs
representing the required inputs. The LOS approach has the advantage that the
relation between the inputs is made explicit in the service call. With LIDS the
relations are only implicitly given by the input description. This drawback is
in our view compensated by the advantage that LIDS service calls are directly
linkable from within Linked Data, as service inputs can be encoded in a URI.

Other related work to integrating data comes from the database community,
specifically information integration. Mediator systems (e.g., Information Mani-
fold [17]) are able to answer queries over heterogeneous data sources, including
services on the Web. Information-providing data services were explicitly treated,
e.g., in [18, 19]. For an extensive overview of query answering in information in-
tegration systems, we refer the reader to [8]. All these works have in common
that they answer queries using services, but do not provide methods to expose
services with a standardised interface and link-able interfaces. Thus information
integration is only done at the time of query answering, which is in contrast to
our proposed approach that allows data sets to be directly interlinked, indepen-
dent of a query processor.

8 Conclusions

A large portion of data on the Web is attainable through a large number of
data services with a variety of interfaces that require procedural code for the
integration of different data sources. We presented a general method for exposing
data services as Linked Data, which enables the integration of different data
sources without specialised code. Our method includes an interface convention
that allows service inputs to be given as URIs and thus linked from other Linked
Data sources. By exposing URIs for service inputs in addition to service outputs,
the model neatly integrates with existing data, can handle multiple outputs for
one input and makes the relation between input and output data explicit.

Furthermore, we proposed a lightweight description formalism and showed
how it can be used for automatically interlinking Linked Data Services with
appropriate data sets. We showed how the descriptions can be instantiated in
SPARQL. We applied our method to create LIDS for existing real-world service,
thus contributing new data to the Web. The approach was evaluated for per-
formance and effectiveness in an experiment in which we interlinked the Billion
Triple Challenge (BTC) 2010 data set with the GeoNames LIDS wrapper. We
showed that the algorithm scales even to this very large data set and produces
large numbers (around 2.5 million) of new links between entities. A possible av-

enue for future work would be to integrate fuzzy matching algorithms, similar
to [10], in case the input to a web service is ambiguous, e.g., for services which
take keywords as input.

We further plan future work in three main areas:

– improve tool support, so that Semantic Web developers can easily adopt the
LIDS method for their applications and services;

– develop approaches for integrating LIDS into SPARQL query processing;
– integrate provenance information and usage policies in the service descrip-

tions, in order to ensure legal compliance and traceability of integrated data
sets.

Acknowledgements

The authors acknowledge the support of the European Community’s Seventh
Framework Programme FP7/2007-2013 (PlanetData, Grant 257641) and of the
Deutsche Forschungs Gemeinschaft (Information Management and Engineering
Graduate School, GRK 895).

References

1. Speiser, S., Harth, A.: Taking the LIDS off Data Silos. In: Triplification Challenge
at I-SEMANTICS. (2010)

2. Speiser, S., Harth, A.: Towards Linked Data Services. In: The Semantic Web -
Posters and Demonstrations (ISWC). (2010)

3. Berners-Lee, T.: Linked Data. Design Issues (2009) http://www.w3.org/

DesignIssues/LinkedData.

4. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Rec. (Feb 2004) http://www.w3.org/TR/rdf-concepts/.

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2 (May 2002) 115–150

6. Bizer, C., Cyganiak, R., Gauss, T.: The RDF Book Mashup: From Web APIs to
a Web of Data. In: Workshop on Scripting for the Semantic Web. (2007)

7. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: International
Conference on Very Large Data Bases (VLDB). (2001) 129–138

8. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10
(2001) 270 – 294

9. Troncy, R., Fialho, A., Hardman, L., Saathoff, C.: Experiencing events through
user-generated media. In: First International Workshop on Consuming Linked
Data (COLD2010). (2010)

10. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: The Semantic Web (ISWC). (2009)

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N.,
Sycara, K.: OWL-S: Semantic Markup for Web Services (2004) http://www.w3.

org/Submission/OWL-S/.

12. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied
Ontology 1(1) (2005) 77–106

13. Iqbal, K., Sbodio, M.L., Peristeras, V., Giuliani, G.: Semantic Service Discovery
using SAWSDL and SPARQL. In: International Conference on Semantics, Knowl-
edge and Grid (SKG). (2008)

14. Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., Stevens, R.: Deciding Se-
mantic Matching of Stateless Services. AAAI Conference on Artificial Intelligence
(AAAI) (2006)

15. Zhao, W.F., Chen, J.L.: Toward Automatic Discovery and Invocation of
Information-Providing Web Services. In: Asian Semantic Web Conference
(ASWC). (2006)

16. Norton, B., Krummenacher, R.: Consuming dynamic linked data. In: First Inter-
national Workshop on Consuming Linked Data (COLD2010). (2010)

17. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information
Sources Using Source Descriptions. In: International Conference on Very Large
Data Bases (VLDB). (1996)

18. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A Data Integration Approach to Au-
tomatically Composing and Optimizing Web Services. In: Workshop on Planning
and Scheduling for Web and Grid Services. (2004)

19. Barhamgi, M., Champin, P.A., Benslimane, D.: A Framework for Web Services-
Based Query Rewriting and Resolution in Loosely Coupled Information Systems
(2007)

[P3] Andreas Harth and Sebastian Speiser. On Completeness Classes for

Query Evaluation on Linked Data. In Proceedings of the 26th Confer-

ence on Artificial Intelligence (AAAI). 2012.

On Completeness Classes for Query Evaluation on Linked Data

Andreas Harth and Sebastian Speiser
Institute AIFB

Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe, Germany

Abstract

The advent of the Web of Data kindled interest in link-
traversal (or lookup-based) query processing methods, with
which queries are answered via dereferencing a potentially
large number of small, interlinked sources. While several
algorithms for query evaluation have been proposed, there
exists no notion of completeness for results of so-evaluated
queries. In this paper, we motivate the need for clearly-
defined completeness classes and present several notions of
completeness for queries over Linked Data, based on the idea
of authoritativeness of sources, and show the relation between
the different completeness classes.

1 Introduction
A tenet in work on query evaluation and reasoning on the
Semantic Web is the open world assumption (OWA): given
the size and decentralised nature of the web, it is impossible
to achieve complete results. Thus, an answer to a query or
reasoning task is therefore always a subset of all possible
answers. To what degree that subset is complete is left open.

In this paper we define more fine-grained completeness
classes for query answers. We do so in the context of
Linked Data, a set of principles detailing how to publish
graph-structured data on the web. Recently developed query
evaluation algorithms traverse the Web of Data and at the
same time record answers to a query (Hartig, Bizer, and
Freytag 2009; Harth et al. 2010; Ladwig and Tran 2010;
Haase, Mathäß, and Ziller 2010; Umbrich, Hogan, and
Polleres 2011). These algorithms, however, lack a clear
specification of result completeness.

Thus, we present several completeness classes that rigor-
ously define which sources may contribute to an answer to
Linked Data queries. Doing so has a number of benefits;
with a clear specification of complete answers:

• users know what to expect from a query evaluation algo-
rithm;

• different algorithms become comparable;

• algorithms can have crisp termination criteria;

• developers can devise optimised algorithms that exclude
irrelevant sources;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• systems can implement operations that rely on checking
for the absence of results, such as negation-as-failure; and

• certain statements can be restricted to trustworthy
sources.

Our specific contributions are:

• We extend and generalise the idea of authoritative sources
from (Hogan, Harth, and Polleres 2009); based on author-
ity, we define the notion of completeness for sources.

• We define three completeness classes for triple patterns
and conjunctive queries: one that considers the entire
web, one that considers documents in the surrounding of
sources derived from the query and one that considers
documents based on the query execution.

• We show how the completeness classes related to each
other.

Please note that our results apply to both web and intranet
environments, as long as data providers follow Linked Data
principles. Our results also apply to Dataspaces (Franklin,
Halevy, and Maier 2005) without central registries.

The remainder of the paper is organised as follows: Sec-
tion 2 provides an example. Section 3 introduces necessary
notation and definitions. Section 4 presents the idea of au-
thoritative documents. Section 5 explains how query parts
can be answered completely, while Section 6 considers en-
tire queries under three completeness types. Section 7 ex-
plains the relation between the completeness classes. Sec-
tion 8 presents related work, and Section 9 concludes.

2 Example
We begin with an example of an RDF graph and a query over
that graph.

Example 1. Figure 1 shows an example RDF graph. We
use labels a:i, a:j, b:i, c:i, d:i, p:i to denote re-
sources, and numbers 1 . . . 8 to denote triples. Now, assume
the query Qex depicted in Figure 2. The overall goal is to
find bindings µ to the variables in the query.

A system with access to the entire graph in Figure 1 could
evaluate the query using standard query processing tech-
niques. However, on the Linked Data web, the graph is dis-
tributed across multiple sources in form of web-accessible
RDF files (henceforth called documents).

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

613

No Triple
1 a:i p:i a:j .
2 a:j p:i a:i .
3 a:i p:i b:i .
4 b:i p:i d:i .
5 b:i p:i c:i .
6 d:i p:i a:j .
7 a:i p:i d:i .
8 d:i p:i c:i .

Document Triple
a 1, 2, 3
b 4
c 5
d 6, 7
e 8
p -

Figure 1: An example RDF graph with six IRIs and eight triples. Numbers denote triples.

No Triple pattern
1 a:i p:i ?x .
2 ?x p:i ?y .

Figure 2: An acyclic query consisting of two triple patterns.

Assume a, b, c, d, e, p are documents; the right table
in Figure 1 lists the six documents and the triples they con-
tain. Please note that the assignment is rather arbitrary and
can differ, as maintainers of documents are free to decide
which triples they host. One thing we can assume, though,
is that identifiers are associated with documents (as man-
dated by the Linked Data principles (Berners-Lee 2006)).
Thus, we can assume that we get some triples with identifer
a:i when looking up the corresponding document a (and
similarly, a:j for a and b:i for b, c:i for c).

Table 1: Bindings for variables in Qex, including which
triples and documents contributed to bindings.

µ µ(?x) µ(?y) Triple Document
µ1 a:j a:i 1, 2 a
µ2 b:i d:i 3, 4 a , b
µ3 d:i a:j 7, 6 d

Now, to answer the query, we perform a lookup on a,
which results in triples 1 - 3 from which we can derive
bindings a:j and b:i for ?x, and a:i for ?y. Next, we
perform a lookup on b which returns triple 4, from which
we can derive d:i for ?y. We also perform a lookup on
d which returns triple 7 and 6, from which we can derive
d:i for ?x and a:j for ?y. As a result, we arrive at the
bindings as depicted in Table 1. Please note that bindings
{?x 7→ b:i, ?y 7→ c:i} (via sources a and c) and bind-
ings {?x 7→ a:i, ?y 7→ c:i} (via sources d and e) cannot
be reached via link traversal.

The example illustrates a couple of issues: first, a link-
traversal algorithm cannot discover documents which are not
referenced in any already known document. Second, assum-
ing a larger graph, the link traversal process could actually
go on for a long time, as more and more new documents
are discovered and accessed. In the rest of the paper we
show how to decide which subset of documents should be
accessed to derive answers to queries.

3 Preliminaries
We introduce basic notation to clarify our understanding of
RDF, Linked Data and queries. We stay close to similar
definitions as found in (Pérez, Arenas, and Gutierrez 2009;
Umbrich, Hogan, and Polleres 2011).

Definition 1 (RDF Terms, Triple, Graph). The set of RDF
terms consists of the set of IRIs I, the set of blank nodes
B and the set of literals L. A triple (s, p, o) ∈ T = (I ∪
B) × I × (I ∪ B ∪ L) is called an RDF triple, where s is
the subject, p is the predicate and o is the object. We denote
by s(t) the subject, p(t) the predicate and o(t) the object of
a triple t. We denote by iris(t) all IRIs from a triple t, and
by terms(t) all RDF terms. A set of triples is called RDF
graph; G = 2T is the set of all graphs.

Next, we define ways for accessing RDF graphs pub-
lished on the web as Linked Data. A key characteristic
of Linked Data is the correspondence between an identifier
and a source; i.e., the name for a thing (non-information re-
source) is associated with the document where one can find
related information (information resource).

Definition 2 (Information Resource, Lookup). Let II ⊆
I be the set of all information resources. The set of all non-
information resources is defined as IN = I \ II . The func-
tion deref : II 7→ G models a Linked Data lookup and re-
turns the graph represented in a document, or the empty set
if none found, e.g., if there is a timeout or the document re-
turns non-RDF content.

We use the terms information resource and document in-
terchangably. To be able to model the assocation between
non-information Resources and information resources we
introduce the concept of correspondence.

Definition 3 (Correspondence). The function co : I 7→ II
associates to a resource its information resource. For inputs
from II , co behaves as the identity function.

Determining the kind of an IRI is not always possible
from the outset; a HTTP lookup clarifies the kind of IRI. We
define a high-level function which provide abstractions on
low-level functionality pertaining to protocol-level issues.
Thus, in co we abstract away the following cases:

1. remove the local identifier from an IRI (i.e., strip every-
thing after the # symbol);

2. dereference the IRI and follow redirects (HTTP status
codes 30x);

614

3. dereference the IRI and parse the Content-Location
header to yield the canonical name;

4. no-op: do nothing if the IRI is an information resource.

Options 1-3 may be called never or repreatedly, to ulti-
mately arrive at 4. The co function may never return due to
infitite redirects; in practice, one sets a limit on how often co
can be applied.

Definition 4 (Variable, Triple Pattern). Let V be a set of
variables; variables bind to RDF terms from I ∪ B ∪ L. A
triple p ∈ (I ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is called triple
pattern. We omit blank nodes from triple patterns for ease
of exposition. P is the set of all triple patterns. We denote
by vars(p) all variables from a triple pattern p.

Definition 5 (Variable Binding). Let M be the set of all
partial functions µ : V 7→ I ∪ B ∪ L. A function µ ∈ M is
called a variable binding.

Definition 6 (Basic Graph Pattern (BGP)). A BGP (or just
query) is a set Q ⊂ P . The set of all queries is Q = 2P .

BGP queries are important as they present a large subset
of SPARQL. Previous work also focussed on such queries.

Definition 7 (Query Binding). The bindings of a queryQ ∈
Q on an RDF graph G ∈ G consisting of the triples avail-
able at a set I ⊂ II , denoted as bindings : Q× 2II 7→ 2M,
is the set of minimal variable bindings which map Q to a
subgraph of G: bindings(Q, I) = {µ ∈ M | dom(µ) =
vars(Q) ∧ ∀p ∈ Q.µ(p) ∈ ∪u∈Ideref(u)}.

4 Authoritative Documents
We introduce the notion of authoritative document for an
identifier, that is, we define which information resource
can talk authoritatively about a specific identifier. In other
words, we restrict the documents which can make statements
containing certain identifiers. Our notion is an extension
and generalisation of the idea of authoritative source from
(Hogan, Harth, and Polleres 2009).

The notion of authoritativeness is important on the web,
which consists of a motley collection of data sources, some
of which may provide questionable information. Also, we
use authoritativeness to specify which information resources
are necessary to have complete information about an identi-
fier.

Definition 8 (Authoritative Document). Document u talks
with authority about a triple t if there is a correspondence
between u and any identifier from t, i.e., co(s(t)) = u,
co(p(t)) = u or co(o(t)) = u. We call a document u
to be subject-authoritative for t if co(s(t)) = u (s-auth in
short). Analogously, p-auth and o-auth relate a document to
the identifier of a predicate or object.

Example 2. Consider the triples and documents from Fig-
ure 1. Document a talks with authority about triples 1-3,
namely s-auth for 1-3 and o-auth for triples 1 and 2. Docu-
ment e contains triple 8 using identifiers (d:i,p:i,c:i)
without authority, as there is no connection in co between
any of the identifiers and e .

Definition 9 (Authority Types). We can have atomtic au-
thority types s, p, or o denoting whether a triple has been
stated with authority regarding its subject, predicate or ob-
ject. We can combine atomic authority types using conjunc-
tion and disjunction to arrive at the set of possible authority
typesA = {⊥, s, p, o, s∨ p, s∨ o, p∨ o, s∨ p∨ o, s∧ p, s∧
o, p ∧ o, s ∧ p ∧ o}. Note that ⊥ denotes no authority.
Example 3. In the following, we explain two examplaric
authority types:
• A triple t is stated s ∧ o-auth, if both t ∈ deref(co(s(t)))

and t ∈ deref(co(o(t))).
• A triple t is stated s ∨ p ∨ o-auth, if t ∈ deref(co(s(t)))

or t ∈ deref(co(p(t))) or t ∈ deref(co(o(t))).
Based on the notion of authority types we introduce a

modified deref function, the derefa function, which only se-
lects triples that satisfy specified authority types.
Definition 10 (Authoritative Lookup). The function
derefa : II × A 7→ G models a Linked Data lookup and
returns the graph represented in an information resource,
while applying the specified authority types, i.e., filtering the
triples which do not adhere to the authority criteria. Please
note that derefa might perform additional lookups if those
are required for clarifying the authoritativeness of a triple.
Example 4. The function derefa(b, s∧o) involves deref(b),
yielding the triple (b:i , p:i , d:i) and subsequently re-
quiring also a deref(co(d:i)) to verify that the triple also
occurs in d.

In case a = ⊥ the results for deref and derefa coincide.
The different authority types specify the documents that

can contribute certain triples to query results, thus paving
the way towards defining completeness.

5 Authoritative Documents for Triple
Patterns

We now show which documents are relevant to a triple pat-
tern p under a specified authority type a. If we assure that
these relevant documents are dereferenced with the derefa
function, we can state that p has been completely answered
under a. Based on complete answers to single triple patterns,
we define complete answers to Basic Graph Pattern queries
in Section 6.

Consider a triple pattern p for which we want to get bind-
ings. In Linked Data query evaluation, the query processor
has to dereference (lookup) IRIs which yields data, which
in turn is matched with the triple pattern to ultimately yield
bindings.

Thus, to get all possible bindings on the web, we would
need to get all II and match the resulting graphs to the triple
pattern p. However, based on the notion of authoritative
source, we can answer a triple pattern p completely, given
a defined authority type.
Example 5. Consider the triple pattern p1 =
(a:i,p:i,?x). If we restrict the answers to be de-
rived from s-auth triples, we are sure to get all those triple if
we perform a lookup on a:i, that is, derefa(co(a:i)), s).
Thus, we have answered p1 completely under s-auth
assumption.

615

We now use the definition of A to derive, given a triple
pattern and authority specification, the subset of I we have
to dereference to find the complete set of bindings for the
pattern.
Definition 11 (Completely Sufficient Documents). We de-
fine csuff : P × A 7→ 22

I×V
, which, given a pattern and an

authority type, returns a set of alternative documents sets,
each of which is sufficient to completely answer the triple
pattern.

The use of variables becomes clear in Section 6.

csuff(t, a) =

{II}, if a = ⊥
{{s(t)}}, if a = s

{{p(t)}}, if a = p

{{o(t)}}, if a = o

{{s(t)}, {p(t)}}, if a = s ∧ p
{{s(t)}, {o(t)}}, if a = s ∧ o
{{p(t)}, {o(t)}}, if a = p ∧ o
{{s(t)}, {p(t)}, {p(o)}}, if a = s ∧ p ∧ o
{{s(t), p(t)}}, if a = s ∨ p
{{s(t), o(t)}}, if a = s ∨ o
{{p(t), o(t)}}, if a = p ∨ o
{{s(t), p(t), o(t)}}, if a = s ∨ p ∨ o

Note that when no authority type is given (a = ⊥), we
would need to retrieve the set of all documents to arrive at
complete answers. There can be several alternatives that
are sufficient for completely answering a pattern (see s ∧ o
authority), and each alternative can require more than one
position (see s ∨ o authority).

If we know that a triple t exists in the documents II un-
der an authority type a, we can infer that t exists in the cor-
responding document of one IRI of each alternatively suffi-
cient IRI set (denoted as L for aLternative):

t ∈ derefa(II , a)
→∀L ∈ csuff(t, a).∃l ∈ L.t ∈ derefa(co(l), a).

The fact that the triple must be contained in all alternatives
may not sound intuitive at first, but every alternative is suffi-
cient to determine whether the triple exists.
Example 6. Consider the triple pattern p1 =
(a:i,p:i,?x). We illustrate the complete answers
for p1 under different authority types:
• s-auth: csuff(p1, s) = {{a:i}}, so there is only one al-

ternative for completely answering p1 by finding all bind-
ings µ ∈ M, such that µ(p1) ∈ derefa(a:i, s), which
would result in the bindings µ1 = {?x 7→ a:i}, and
µ2 = {?x 7→ b:i}.
• s ∧ p-auth: csuff(p1, s ∧ p) = {{a:i}, {p:i}},

so it would be sufficient to retrieve either the graph
derefa(a:i, s ∧ p) or the graph derefa(p:i, s ∧ p) to
find all bindings for p1. However, both graphs are empty,
as there is no triple in co(p:i) = p and thus none of the
triples in co(a:i) = a is “confirmed”, as required by
s ∧ p authority. Please note that the invocation of derefa

may involve additional lookups to ensure that triples ad-
here to a given authority type. These additional lookups
only invalidate existing results but never contribute new
ones.

• s∨o-auth: csuff(p1, s∨o) = {{a:i,?x}}, so we cannot
answer p1 completely, because there is only one alterna-
tive, which would require a binding for ?x.

One complication arises when all alternatives returned by
csuff contain variables instead of IRIs. In this case, the
pattern cannot be completely answered under the authority
scheme. However, if we have conjunctions of several triple
patterns, another pattern may be used to find complete bind-
ings for the variables in a sufficient alternative, thus mak-
ing the conjunction completely answerable. We define com-
pleteness for such conjunctions in the next section.

6 Completeness of Basic Graph Patterns
In the following, we address the problem of answer-
ing queries consisting of several patterns (so-called Basic
Graph Patterns). A query Q consisting of several patterns
tp0, tp1, . . . tpn can be completely answered if the corre-
sponding required positions of a triple pattern are bound ei-
ther by a constant or by a variable in another completely
answerable pattern in the query. We thus define a mapping
for assigning a required authority to every pattern in a query.

Definition 12 (Authority Mapping). We define a mapping
α : Q 7→ A that assigns triple patterns in Q to different
authority types. The set of all such mappings is denoted as
AU .

Definition 13 (Authoritative Query Bindings). We extend
the bindings : Q × 2I 7→ 2M function to return only bind-
ings satisfying an authority mapping α: bindingsα(Q, I) =
{µ ∈ M | dom(µ) = vars(Q) ∧ ∀p ∈ Q.µ(p) ∈
∪u∈Iderefa(u, α(p))}.

We define completeness via a set s of documents that have
to be retrieved to completely answer a query Q, i.e., a set s
is complete for an authority mapping α, if bindingsα(Q, s)
contains all desired query results. A natural requirement for
such a set s of documents is that it holds the same results
for Q as the entire Linked Data web, i.e. bindingsα(Q, s) =
bindingsα(Q, II).

As it is infeasible to materialise the entire Linked Data
web, i.e., deref(II), and thus instead we are searching for a
subset s ⊂ II , where |s| � |II |, which can be accessed at
query time and so that deref(s) contains sufficient informa-
tion to answer the query Q.

Thus, we define that a set s of documents is complete for
queryQ given an authority mapping α, if complete(Q,α) ⊆
s, where complete is one of the different completeness
classes introduced in the following:

• web-complete wc : Q × AU 7→ 2II which is mainly of
theoretical interest when considering the web, but pos-
sibly applicable to controlled environments such as in-
tranets;

• seed-complete sc : Q×AU 7→ 2II which is practical and
pragmatic solution, if no authority restrictions are given;

616

• query-reachable-complete qrc : Q × AU 7→ 2II which
defines complete results under given authority types for a
certain class of queries.
We now formally define the three different completeness

classes and then discuss the relationships between the differ-
ent notions in Section 7.

6.1 Web-complete Set
The web-complete set gives the results of the query, when
it is evaluated over the whole Linked Data web, i.e. II .
However it is sufficient to evaluate over every document that
helps to produce a result binding, (could also be a dupli-
cate of a binding that can be produced without it). Without
authority restrictions, every document can contain arbitrary
triples, thus there is no other way of determining the set than
accessing every u ∈ II or having some form of index struc-
ture, which has accessed every such u before.
Definition 14. With authority restriction, we define web-
complete as the set of documents that contain a triple which
is part of a result when evaluating Q over II .

wc(Q,α) = {u ∈ II | ∃µ ∈ bindingsα(Q, II).
∃p ∈ Q. µ(p) ∈ derefa(u, α(p)}.

Example 7. Considering our example of query Qex and as-
suming two authority mappings α1 and α2 we get:
• Let α1(p) = ⊥, for p ∈ Qex: wc(Qex, α1) =
{a,b,c,d,e}.

• Let α2(p) = s, for p ∈ Qex: wc(Qex, α2) = {a,b}.

6.2 Seed-complete Set
The seed-complete set consists of all documents that can be
reached via following triple paths of maximum length of the
query beginning from triples in the documents identified by
the IRIs in the query. The intuition is a traversal of II to get
the documents that are up to n hops away.

In the size-restricted seed-complete set, we fix n to the
query size |Q|. In an alternative, length-restricted seed-
complete set (which we leave open for future work), we can
fix n to the depth of the query, i.e., the length of longest path
in the query, starting from a constant.

As there can be several different IRIs in the query and
from each IRI there can start several paths of triples, we pos-
sibly end up with forests, consisting of several trees starting
in different triples.
Definition 15 (Forest). A triple forest grounded in a set of
seed IRIs is a list of triples, where each triple is either in
the seed IRIs, or in the corresponding document of a re-
source occuring in a previous triple in the list. The func-
tion forests : 2II × N 7→ 2T

∗
returns all forests of triples

of size up to n, starting with the triples in the seed IRIs
s0 = co(iris(Q)):

forests(s0, n) =⋃
j∈[1..n]

{(t1, . . . , tj) ∈ T j | ∀i ∈ [1..j].ti ∈ ∪u∈s0deref(u)∨

∃k ∈ [1..i− 1].ti ∈ ∪u∈iris(tk)deref(u)}

Definition 16. We define the seed completeness set to con-
tain all documents corresponding to IRIs in the forests
grounded in the query’s IRIs:

sc(Q,α) = co(iris(forests(iris(Q), |Q|))).

Example 8. Considering our example of query Qex, we get
for iris(Qex) = {a:i,p:i}, and |Qex| = 2:

forests(iris(Qex), |Qex|) = {(t1), (t1, t1), (t1, t2), (t1, t3),
(t2), (t2, t1), (t2, t2), (t2, t3),

(t3), (t3, t1), (t3, t2), (t3, t3),

(t3, t4)}.
sc(Qex, α) = {a,p,b,d},

where ti stands for triple number i from the runnnig example
(see Section 2).

6.3 Query-reachable-complete Set
We first define the notion of completely answerable queries
for a given authority mapping α. Then, we specify the set
of documents required to answer such a query completely in
the sense of obtaining the same results as if the query would
be evaluated over the web-complete set. The equivalence of
the result sets is shown in Section 7.

Definition 17 (Completely-answerable Query). A query is
completely answerable if the triple patterns can be brought
into an order, such that for each triple pattern p, there ex-
ists a set of RDF terms sufficient to completely answer p,
where each term is either an IRI or a variable occuring in a
previous pattern. The predicate caqα defines the completely
answerable property of a query under an authority mapping
α:

caqα(Q)↔
(Q = {p} ∧ ∃L ∈ csuff(p, α(p)).∀l ∈ L.l ∈ IN)∨
(|Q| > 1 ∧ ∃Qn, Q1.Qn ∪Q1 = Q ∧Qn ∩Q1 = ∅∧

caqα(Qn) ∧Q1 = {p}∧
∃L ∈ csuff(p, α(p)).∀l ∈ L.l ∈ I ∨ l ∈ vars(Qn)).

In other (recursive) words: a query Q is completely answer-
able if either Q is of size 1 and there exists a set of sufficient
terms which are all IRIs in Q, or one can remove a pattern
p from the query, such that the resulting query Qn is com-
pletely answerable, and p has a set of required terms which
are either IRIs or variables bound by query Qn.

An IRI must be in the query-reachable-complete set if it
occurs in a forest, starting in the IRIs of the query, which is a
result for a completely answerable subquery of the original
query.

Definition 18 (Completely Answerable Subqueries). The
function csqα : Q 7→ 2Q returns all completely-answerable
subqueries of a query:

csqα(Q) ={Q′ ⊆ Q | caqα(Q′)}.

The forests, which are results for a completely answer-
able subquery of Q are defined by the function qforestsα as

617

a subset of all forests starting in the IRIs contained in the
query.

qforestsα(Q) = {F ∈ forests(co(iris(Q)), |Q|) |
∃Q′ ∈ csqα(Q) ∧ ∃µ ∈M.µ(Q′) = F}

Definition 19. We define the query-reachable-complete set,
to contain all documents corresponding to IRIs in the forests
that produce bindings for a completely answerable subquery
of Q:

qrc(Q,α) = co(iris(qforestsα(Q))).

Example 9. Considering our example of query Qex, we get
for α, where α(p) = s, for all p ∈ Qex:

csqα(Qex) ={Qex, {(a:i,p:i,?x)}}
qforestsα(Qex) ={(t1), (t1, t2), (t3), (t3, t4)}

qrc(Qex, α) ={a,p,b,d},

where ti stands for triple number i from the runnnig example
(see Section 2). We can see that wc(Qex, α) ⊂ qrc(Qex, α),
meaning that the query reachable set produces all bindings
available in the web under the authority mapping α. In Sec-
tion 7 we show this in general for all completely answerable
queries.

7 Relations Between Completeness Classes
In the following, we show the relation between the different
completeness classes.

Theorem 1. QRC results are a subset of (size-restriced) SC
results: qrc(Q,α) ⊆ sc(Q,α).

Proof. Theorem 1 is obvious from the definition, as
qforestsα(Q) ⊆ forests(co(iris(Q), |Q|)).

Theorem 2. SC query results are a subset of WC results:
bindingsα(Q, sc(Q,α)) ⊆ bindingsα(Q,wc(Q,α)).

Proof. Theorem 2 is obvious from the definition, as web
complete is defined to contain all bindings, and thus seed
complete can not contain more bindings.

Theorem 3. For a query Q that is completely answerable
under an authority mapping α, the bindings for query reach-
able complete and web complete coincide:
bindingsα(Q, qrc(Q,α)) = bindingsα(Q,wc(Q,α)).

Proof. We prove the equivalence of the sets, by showing
their mutual containment:
(1) bindingsα(Q, qrc(Q,α)) ⊆ bindingsα(Q,wc(Q,α))
follows from the definition, that web completeness means
that every (in this case α-authoritative) result is found.
(2) bindingsα(Q,wc(Q,α)) ⊆ bindingsα(Q, qrc(Q,α))
is shown by induction on the query size. As bindings is
monotonic over the set of documents, we reduce this case
to showing that wc(Q,α) ⊆ qrc(Q,α), if caqα(Q).
Induction start for a query Q of size 1:
from caqα(Q) ∧ |Q| = 1 ∧ u ∈ wc(Q,α) follows that
there exists a binding µ for Q over II , which maps the

single triple pattern p ∈ Q to a triple from u: ∃µ ∈
bindingsα(Q, II).µ(p) ∈ derefa(u, α(p)). This implies
that u ∈ co(iris(µ(p))), for α(p) 6= ⊥, which is ruled
out by the definition of caq. Furthermore, we know that
(µ(p)) ∈ forests(co(iris(Q)), 1), as µ(p) is a query answer
to Q = {p}, and p must be completely answerable, given
that caqα(Q), it follows, that (µ(p)) ∈ qforestsα(Q) and
thus: u ∈ qrc(Q,α).
We form the induction hypothesis:

caqα(Q) ∧ u ∈ wc(Q,α) ∧ |Q| = n→ u ∈ qrc(Q,α).

The inductive step: given caqα(Q)∧ u ∈ wc(Q,α)∧ |Q| =
n + 1, we can split Q into Qn and Q1, such that Q =
Qn ∪Qn ∧Qn ∩Q1 = ∅ ∧ |Q1| = 1 ∧ caqα(Qn) (follows
from caqα(Q)). Accordingly our argument can be split into
two cases:
Case (2.1): u is also in the web complete set of Qn:
caqα(Qn) ∧ |Qn| = n ∧ u ∈ wc(Qn, α). We can use the
induction hypothesis and conclude u ∈ qrc(Qn, α) and be-
cause the reachable completeness set is monotonic (a larger
query still has the smaller query as a subquery), we con-
clude: u ∈ qrc(Q,α).
Case (2.2): u is not in the web complete set of Qn, thus it
must be contributed by a variable binding or a constant in
Q1. Evaluating Q1 has to be done only for the bindings of
Qn, other results that do not join with the results forQn can-
not contribute an result for Q. As caqα(Q), we know that
there exists a set of terms sufficient for completely answer-
ing Q1, in which all terms are either constants or variables
already occuring in Qn. Therefore, we can reduce the case
to considering only those µ(Q1), where µ is a result binding
for Qn. Thus, µ(Q1) is completely answerable, and we can
use the induction start:

caqα(µ(Q1)) ∧ |Q1| = 1→ u ∈ qrc(Q1, α)

→ u ∈ qrc(Q,α).

8 Related Work
Early work on queries over the web graph include (Mendel-
zon and Milo 1997) and (Abiteboul and Vianu 2000). (Har-
tig, Bizer, and Freytag 2009) introduced Linked Data query
processing via link traversal. Subsequent work (Hartig,
Bizer, and Freytag 2009; Harth et al. 2010; Ladwig and Tran
2010; Haase, Mathäß, and Ziller 2010; Umbrich, Hogan,
and Polleres 2011) lack a rigorous specification of termi-
nation criteria (some use heuristics). (Fionda, Gutierrez,
and Pirrò 2011) introduce a navigation language, which
has different characteristics than our query language based
on BGPs. (Hartig 2012) analyses the computability of
SPARQL queries over Linked Data under different seman-
tics. The notion of semantics in (Hartig 2012) roughly cor-
responds to our notion of completeness: the full-web se-
mantics is similar to our web-completeness, whereas the
reachability-based semantics can be considered as an ab-
stract concept, while we provide two actual completeness
classes. While (Hartig 2012) shows that in the general case

618

the full-web semantics is not computable, we show that un-
der certain authority constraints it is possible to achieve re-
sults equivalent to web-completeness.

Several other papers propose definitions for semantics in
distributed settings. The Local Relational Model (Serafini et
al. 2003) uses model-theoretic means to specify the seman-
tics of a federation of relational databases. Context OWL
(Bouquet et al. 2003) considers description logic inference
and connects models via bridge rules, whereas our defini-
tions are on the RDF graph level with shared use of identi-
fiers. Our definitions have an operational aspect and are tied
to a view that assumes only local knowledge, in contrast to
the global view taken by typical model-theoric approaches.
Finally, (Polleres, Feier, and Harth 2006) use a form of a lo-
cal closed world model to specify the semantics of queries
with negation as failure under a modified OWA.

9 Conclusion
We have provided a general notion of authoritativeness and
defined three completeness classes for Linked Data query
evaluation. While the seed-complete class is straightforward
to implement, the query-reachable-complete class requires
less lookups while yielding a well-defined and useful set of
results, based on a specified authority assignment for each
query. However, implementing query-reachable is more in-
tricate.

Future work includes extending the authority types with
negation, thus allowing for a negation-as-failure semantics,
an algorithm for enumerating possible authority assignments
for queries, and an investigation of query result complete-
ness when allowing sources with query capabilities.

Acknowledgements
We thank Sebastian Rudolph for insightful comments, and
acknowledge the support of the European Commission’s
Seventh Framework Programme FP7/2007-2013 (Planet-
Data, Grant 257641).

References
Abiteboul, S., and Vianu, V. 2000. Queries and computation
on the web. Theoretical Computer Science 239:231–255.
Berners-Lee, T. 2006. Linked Data. http://www.w3.org/
DesignIssues/LinkedData.
Bouquet, P.; Giunchiglia, F.; van Harmelen, F.; Serafini, L.;
and Stuckenschmidt, H. 2003. C-OWL: Contextualizing
ontologies. In Second International Semantic Web Confer-
ence, number 2870 in Lecture Notes in Computer Science,
164–179. Springer.
Fionda, V.; Gutierrez, C.; and Pirrò, G. 2011. Semantic
navigation on the web of data: Specification of routes, web
fragments and actions. CoRR abs/1111.4316.
Franklin, M.; Halevy, A.; and Maier, D. 2005. From
databases to dataspaces: a new abstraction for information
management. SIGMOD Rec. 34:27–33.
Haase, P.; Mathäß, T.; and Ziller, M. 2010. An evalua-
tion of approaches to federated query processing over linked

data. In 6th International Conference on Semantic Systems,
I-SEMANTICS 2010. ACM.
Harth, A.; Hose, K.; Karnstedt, M.; Polleres, A.; Sattler, K.-
U.; and Umbrich, J. 2010. Data summaries for on-demand
queries over linked data. In Proceedings of the 19th Inter-
national Conference on World Wide Web, 411–420. ACM.
Hartig, O.; Bizer, C.; and Freytag, J.-C. 2009. Executing
sparql queries over the web of linked data. In Eight Inter-
national Semantic Web Conference, volume 5823 of Lecture
Notes in Computer Science, 293–309. Springer.
Hartig, O. 2012. Sparql for a web of linked data: Semantics
and computability (extended version). CoRR abs/1203.1569.
Hogan, A.; Harth, A.; and Polleres, A. 2009. Scalable au-
thoritative owl reasoning for the web. International Journal
on Semantic Web Information Systems 5(2):49–90.
Ladwig, G., and Tran, T. 2010. Linked data query process-
ing strategies. In Ninth International Semantic Web Confer-
ence, volume 6496 of Lecture Notes in Computer Science.
Springer. 453–469.
Mendelzon, A. O., and Milo, T. 1997. Formal models of
web queries. In Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’97,
134–143. ACM.
Pérez, J.; Arenas, M.; and Gutierrez, C. 2009. Semantics
and complexity of sparql. ACM Transactions on Database
Systems 34:16:1–16:45.
Polleres, A.; Feier, C.; and Harth, A. 2006. Rules with
contextually scoped negation. In Third European Semantic
Web Conference, number 4011 in Lecture Notes in Com-
puter Science, 332–347. Springer.
Serafini, L.; Giunchiglia, F.; Mylopoulos, J.; and Bernstein,
P. 2003. Local relational model: a logical formalization
of database coordination. In Proceedings of the 4th Inter-
national and Interdisciplinary Conference on Modeling and
Using Context, 286–299. Springer.
Umbrich, J.; Hogan, A.; and Polleres, A. 2011. Improv-
ing the recall of decentralised linked data querying through
implicit knowledge. CoRR abs/1109.0181.

619

[P4] Anisa Rula, Matteo Palmonari, Andreas Harth, Steffen Stadtmüller,

and Andrea Maurino. On the Diversity and Availability of Temporal

Information in Linked Open Data. In Proceedings of the 11th Interna-

tional Semantic Web Conference (ISWC), pages 492–507. 2012.

On the Diversity and Availability of Temporal

Information in Linked Open Data

Anisa Rula1, Matteo Palmonari1, Andreas Harth2,
Steffen Stadtmüller2, and Andrea Maurino1

1 University of Milano-Bicocca
{rula,palmonari,maurino}@disco.unimib.it

2 Karlsruhe Institute of Technology (KIT)
{harth,Steffen.Stadtmueller}@kit.edu

Abstract. An increasing amount of data is published and consumed
on the Web according to the Linked Data paradigm. In consideration
of both publishers and consumers, the temporal dimension of data is
important. In this paper we investigate the characterisation and avail-
ability of temporal information in Linked Data at large scale. Based on
an abstract definition of temporal information we conduct experiments
to evaluate the availability of such information using the data from the
2011 Billion Triple Challenge (BTC) dataset. Focusing in particular on
the representation of temporal meta-information, i.e., temporal infor-
mation associated with RDF statements and graphs, we investigate the
approaches proposed in the literature, performing both a quantitative
and a qualitative analysis and proposing guidelines for data consumers
and publishers. Our experiments show that the amount of temporal in-
formation available in the LOD cloud is still very small; several different
models have been used on different datasets, with a prevalence of ap-
proaches based on the annotation of RDF documents.

Keywords: temporal information, temporal annotation, linked data.

1 Introduction

The problem of managing temporal information has been deeply studied in the
field of temporal databases [18] and has been more recently addressed in the
World Wide Web domain [9,1]. In fact, most data-driven and Web applications
need to manage temporal information in order to capture, model, explore, re-
trieve, and summarize information changing over time. Moreover, the amount
of rapidly changing data is likely to grow in the next future with the increasing
publication of sensor data, which explicitly represents real-time data of evolving
phenomenon over time [19,25,27]. As the information on the Web can change
rapidly [4], also Linked Data on the Web1 cannot be assumed to be static, with
RDF statements frequently added to and removed from published datasets [29].

1 http://lod-cloud.net/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 492–507, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://lod-cloud.net/

On the Diversity and Availability of Temporal Information 493

As a consequence, change management and temporal information are receiving
an increasing attention in the Linked Data domain. In particular, a number of
significant issues have been investigated: a resource versioning mechanism for
Linked Data, which allows for publishing time-series of descriptions changing
over time [7]; a method to monitor the published datasets, successfully applied
to several sources [17]; the maintenance of links over evolving datasets [24].

The capability of managing temporal information plays also a crucial role in
several applications and research areas. In Semantic Data Integration, temporal
information can be used to favor the most up-to-date information when fusing
data [22,23]. The analysis of temporal information can also support entity reso-
lution in some complex scenarios where the values of the attributes considered
in the matching process change over time [21]. In Temporal Query Answering
and Search, temporal information can be used to filter out the data of interest
given some temporal constraint, or to rank the results of a search engine on a
temporal basis. Timelines associated with data can improve the User Experience
by presenting information in a time-dependent order [30,1].

The capability of designing effective solutions depends on the availability of
temporal information and the possibility to collect and process this information
across heterogeneous datasets. For example, the modification date associated
with RDF documents and extracted via HTTP protocol analysis has been used to
fuse data coming from different DBpedia datasets [22]; however, this information
is not available in many datasets. Understanding the current status of temporal
information published as Linked Data is fundamental for the development of
applications able to deal with the dynamism in the data.

In this paper we investigate temporal information published in Linked Data on
the Web by analysing its availability and characterisation both from a quanti-
tative and qualitative perspective. To the best of our knowledge, despite the
proposal of several approaches to model and query temporal information in
RDF [11,5,30,19], support versioning for Linked Data [24], and monitor changes
[29,17], a systematic and large scale analysis in this field is still missing. Based
on a more precise definition of the concept of temporal information, we iden-
tify a specific kind of temporal information, called temporal meta-information
in the paper. Temporal meta-information is particularly relevant to several ap-
plication domains because it associates RDF statements and graphs with infor-
mation about their creation, modification and validity. Since the analysis of the
whole LOD cloud is unfeasible, we use the large Billion Triple Challenge2 (BTC)
dataset for our investigation. In particular, we focus on the characterization and
availability of temporal meta-information, reviewing the proposed models in the
literature for modelling such information and analysing their usage in the BTC.

The analysis of the BTC corpus suggests that the availability of temporal
information is still scarce, with negative consequences on the design of effective
solutions leveraging temporal information at large scale. Moreover, we found
that none of the models proposed to manage temporal information has been
widely adopted, although temporal annotations of documents seem to prevail so

2 http://km.aifb.kit.edu/projects/btc-2011/

http://km.aifb.kit.edu/projects/btc-2011/

494 A. Rula et al.

far. Based on the results of our empirical analysis, we provide some guidelines to
data publishers and consumers in order to take advantage of the representation
approaches proposed so far.

The paper is organized as follows: Section 2 introduces the preliminary defi-
nitions we adopt in this paper; in Section 3 we introduce the notion of temporal
information and we investigate their availability in the BTC, analysing the more
frequent temporal properties and the pay-level-domain they occur in. In Section
4, we review the approaches proposed in the literature for the representation of
temporal meta-information and discuss their adoption in well-known datasets.
In Section 5 we conduct experiments to quantitatively investigate the adoption
of these models in the LOD cloud using the BTC dataset and we discuss our
findings. In section 6, we draw the conclusions.

2 Preliminaries

RDF triples and RDF graphs.Given an infinite set U of URIs (resource identifiers),
an infinite set B of blank nodes, and an infinite set L of literals, a triple 〈s, p, o〉 ∈
(U ∪B)×U×(U∪B∪L) is called anRDF triple; s, p, o are called, respectively, the
subject, the predicate and the object of the triple. AnRDF graph G is a set of RDF
triples. A named graph is a pair 〈G, u〉, where G is a graph and u ∈ U . RDF data
are often stored using the N-quad format; a quad is a quadruple 〈s, p, o, c〉 where c
defines the context of an RDF triple 〈s, p, o〉; the context describes the provenance
of a triple, often represented by - but not limited to - anRDF graph.AnRDF triple
(or simply triple in the following) is also called statement. We call statements and
graphs also truth-valuable RDF elements, as they can be associated with a truth
value, under an interpretation function [10].

Temporal entities. We distinguish two types of temporal entities used for repre-
senting temporal information in RDF data: time points, represented by a single
variable tp, and time intervals, represented by the standard notation [tb; te],
where tb and te represent the time points respectively beginning and ending the
interval and tb ≤ te (in this paper we do not consider representations of time
where intervals are not bound by time points).

Concrete Representation of Time Points on the Web. According to well-accepted
best practices, time points are represented on the Web by means of date formats.
RFC 2616 defines three different date formats that are used in the HTTP pro-
tocol3. The first datetime format, e.g., Sun, 07 Sep 2007 08:49:37 GMT,
is defined by the standard RFC 822 [6] and is the most preferred. The sec-
ond datetime format, e.g., Sunday, 07-Sep-07 08:49:37 GMT, is defined
by the standard RFC 850 [15]. The third datetime format, e.g., Sun Sep 7
08:49:37 2007, is defined by ANSI C’s asctime format. ISO 8601 defines
a numerical date format [16]; an example of date according to this format is
2007-09-07T08:49:37.sZ. Based on this standard, dates can be also modelled as
primitive datatypes in XML Schema [8]. The primitive types, date, dateTime,

3 http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

On the Diversity and Availability of Temporal Information 495

gYearMonth, gYear, gMonthDay, gDay and gMonth defined by these spec-
ifications are usually used in RDF data. An alternative representation of time
for Linked Data, which denotes temporal entities with URIs and makes use of
the OWL Time ontology [12] has also been proposed [5].

RDF statements and documents. Some URIs occurring in RDF statements de-
note resources that are, in fact, documents (e.g., XML documents, PDF docu-
ments, or HTML pages). For the purpose of this paper it is relevant to distinguish
between generic documents and documents publishing RDF data, called RDF
documents in the following; like other generic documents, RDF documents can
be described by RDF descriptions, but differently from other documents, they
also contain truth-valuable RDF elements (statements and graphs). In other
words, a description about an RDF document can provide a meta-description
about the content of the RDF document4.

3 Temporal Information and Temporal Properties

In this section, we first propose an abstract definition of temporal information
by introducing the concept of temporal meta-information. Then we analyse the
availability of temporal information in Linked Data and the properties that are
used more often to represent such information.

– Temporal information. At the abstract level a temporal information can
be described as a ternary relation T (x, a, t), where x is a resource, a state-
ment, or a graph, a is a property symbol, and t is a temporal entity. We
call temporal property any property symbol used in a temporal information.
Since a temporal information T (x, a, t) can be also interpreted as a temporal
annotation associated with the element x, the terms temporal information
and temporal annotation will be used interchangeably, depending on the
context.

– Temporal meta-information. We observe that, according to the above
definition, truth valuable and non truth valuable RDF entities can be associ-
ated with temporal information. Therefore, we introduce a new concept that
specifically refers to temporal information associated with truth-valuable el-
ements: a temporal information T (x, a, t) is a temporal meta-information
if and only if x is a truth-valuable RDF element. The concept of tempo-
ral meta-information, which is defined according to semantic criteria, allows
distinguishing between temporal information associated with objects in a do-
main of interest (e.g. the birth date of a person, but also the creation date of
a PDF document) and temporal information associated with truth-valuable
RDF elements (e.g, the temporal validity of statement, or the last update of
an RDF document).

4 An increasing number of RDF descriptions are also available in the RDFa syntax
from plain HTML and XHTML documents; however, in this paper we focus only
descriptions available in RDF/XML documents because the crawled data of the BTC
corpus, which we use in our analysis, do not include data extracted from RDFa
sources.

496 A. Rula et al.

3.1 Dataset and Experimental Setup

To give more insights about the usage of temporal information in Linked Data
cloud, we analyse the latest release of the BTC dataset which was crawled from
the Web in May/June 2011 using a random sample of URIs from the BTC 2010
dataset as seed URIs. The BTC corpus which represents only a part of all available
LinkedData on theWeb, contains over 2.1 bn statements in N-Quads5 formatwith
over 47 K unique predicates, collected from 7.4 M RDF documents. However, our
corpus constitutes a large collection of documents sampled from a wide variety of
Linked Data publishers. A crawling-based approach is per design biased towards
datasets that are well-interlinked, while more isolated datasets are less likely to be
found. We also observe that the corpus is static, and it samples only RDF/XML,
not covering data in other syntaxes like RDFa.We expect these aspects not to have
any negative effects on the findings of our analysis, which still targets specifically
prominent and well interlinked part of the LOD cloud.

Considering the size of the corpus, we use Apache Hadoop6 to analyse the
data. Hadoop allows for the parallel and distributed processing of large datasets
across clusters of computers. We run the analysis on the KIT OpenCirrus7

Hadoop cluster. For our analysis we used 54 work nodes, each with a 2.27 GHz
4-Core CPU and 100GB RAM, a setup which completes a scan over the entire
corpus in about 15 minutes.

3.2 General Analysis

To gather a broad selection of temporal information in BTC, we employ a string-
based search method which implements a class named SimpleDateFormat8 in
Java. We are confident about the correctness of the collected data because the
time parser is well-known and used by a large community.

We assume that if temporal information is present, it is contained in the
object position of quads. Thus, we use regular expressions to identify temporal
information in the object of every quad in the BTC. However, it has been recently
shown that the best practices used to publish data on the Web [3] are not always
followed by publishers [13].

We notice that often RDF publishers do not use the date formats defined
by standards such as RFC 822, ISO 8601 or XML Schema. In order to collect
all temporal information that is represented in the BTC but is not fully com-
pliant to standard date formats, we consider variations of the standards. The
variations of the standard date formats are expressed by regular expressions
based on the following patterns: (EEE), dd MMM yy (HH:mm:(ss) (Z|z))
and yyyy-MM-(dd(’T’HH:mm:(ss).(s)(Z|z))) respectively9. We extract

5 http://sw.deri.org/2008/07/n-quads/
6 http://hadoop.apache.org/
7 https://opencirrus.org/
8 http://docs.oracle.com/javase/6/docs/api/java/text/
SimpleDateFormat.html

9 The value in the parentheses is optional.

http://sw.deri.org/2008/07/n-quads/
http://hadoop.apache.org/
https://opencirrus.org/
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

On the Diversity and Availability of Temporal Information 497

Table 1. Top twenty PLDs with respect to
temporal quads

PLD quad. Tquad doc Tdoc
(M) (K) (K) (K)

scinets.org 56.2 3,391 51.9 44.3
legislation.gov.uk 33.1 1,249 246.4 246.4
ontologycentral.com 55.3 1,029 4.6 4.4
bibsonomy.org 34.5 881 234.7 177.3
loc.gov 7.8 854 345.3 302.9
bbc.co.uk 6.3 679 173.5 83.6
livejournal.com 169.8 530 239.2 238.9
rdfize.com 37.6 495 204.7 204.6
data.gov.uk 13.8 479 178.8 91.9
dbpedia.org 28.4 423 596.6 124.1
musicbrainz.org 2.5 359 0.3 0.3
tfri.gov.tw 153.3 272 154.4 78.2
archiplanet.org 16.3 186 79.2 53.5
freebase.com 27.8 173 572.9 109.1
vu.nl 6.8 156 294.2 26.7
fu-berlin.de 5.7 139 291.6 37.4
bio2rdf.org 20.2 129 744.7 71.6
blogspace.com 0.9 124 0.2 0.2
opera.com 24.1 124 160.3 124.1
myexperiment.org 1.5 114 26.1 13.7

Table 2. Top twenty temporal proper-
ties wrt. temporal quads

Temporal Property quad doc
(M) (K)

dcterms:#modified 3.4 44
dcterms:modified 2.3 842
dcterms:date 1.5 247
dc:date 1.4 188
dcterms:created 0.6 450
dcterms:issued 0.2 222
lj:dateCreated 0.2 238
swivt:#creationDate 0.2 197
lj:dateLastUpdated 0.22 225
wiki:Attribute3ANRHP
certification date 0.18 53
tl:timeline.owl#start 0.17 31
tl:timeline.owl#end 0.15 24
bio:date 0.14 143
po:schedule date 0.14 15
swrc:ontology#value 0.096 37
cordis:endDate 0.078 0.002
nl:currentLocationDateStart 0.076 26
po:start of media availability 0.074 10
foaf:dateOfBirth 0.068 68
liteco:dateTime 0.062 62

12,863,547 temporal quads, i.e., quads containing a temporal entity, and 1,670
unique temporal properties from the corpus.

Furthermore, to provide a deeper analysis of the distribution of temporal in-
formation within the dataset, we extract all the pay-level domains (PLDs) occur-
ring in the context of the quads. Herein, we use PLDs to distinguish individual
data providers [20]. Table 1 lists the top 20 PLDs publishing the largest number
of temporal quads. For each PLD we report: the total number of quads (quad.
in Table 1), the number of temporal quads (Tquad.), the number of documents
(doc) and the number of temporal documents (Tdoc).

We can notice that although scinets.org is listed on top of the list, it does
not provide the highest ratio of temporal quads over the total number of quads
compared to other datasets. With respect to the temporal quads, we can notice
that musicbrainz.org and blogspace.com represent the largest number
of temporal quads as a proportion of all quads. Similarly for the documents,
we notice that legislation.gov.uk, rdfize.com and blogspace.com
represent the three PLDs with the largest number of temporal documents as a
proportion of all documents.

Table 2 lists the top 20 temporal properties that occur more frequently in
the BTC, reporting the number of quads and documents they occur in. We also
provide an analysis of the distribution of the top-10 most frequent temporal
properties within the most significant PLDs, which is plotted in Figure 1. It can

498 A. Rula et al.

100,0% 100,0% 100,0% 53,0% 11,60%
11,20%
15,50%

11,30%

14,8% 53,0%

19,5%

57,9%

84,5% 31,5%

27,2%

65,5%

100,0%

24,3%

0,0%

27,5%

3,0%

22,7%

0,0%

15,5%

0,0%

50,4%

0,0% 0,0%

livejournal.com: archiplanet.org: bibsonomy.org: pokepedia.fr:

semanticweb.org: referata.com: wecowi.de: bbc.co.uk:

legislation.gov.uk: data.gov.uk: loc.gov: rdfize.com:

ontologycentral.com: scinets.org: musicbrainz.org: other

Fig. 1. Distribution of top ten temporal properties with respect to main PLDs

be noticed that not only the properties of the Dublin Core (DC) vocabulary10

do occur much more frequently than other properties, but they are also used
more often across different datasets. Remarkably, the temporal property that
occurs more often in the BTC dataset, i.e., dcterms:#modified, has a wrong
spelling (the correct spelling denotes in fact the second most frequent temporal
property in the corpus). As shown in Figure 1, this is also the only temporal
property published in the scinets.org context, and the spelling is wrong in
all the quads having the same context.

4 Temporal Meta-information Description Models

In this section we focus on temporal meta-information, that is temporal informa-
tion defined as T(x,a,t) where x can be either a statement or a graph. Because
of the tight constraints given by the triple-based structure of RDF descriptions,
the concrete RDF-based representation of an even simple temporal annotation
like T (x, a, t), with x being a document and t a temporal entity, requires some
sophisticated mechanisms. Several approaches for providing a concrete repre-
sentation of a temporal annotation have been proposed. We identify three core
perspectives that have been adopted for the concrete representation of temporal
meta-information in RDF:

– Document-centric Perspective, where time points are associated with RDF
documents.

– Fact-centric Perspective, where time points or intervals (usually intervals)
are associated with facts; since facts can be represented by one or more
statements - we further separate the Fact-centric Perspective into:

10 http://www.dublincore.org/documents/dces/

http://www.dublincore.org/documents/dces/

On the Diversity and Availability of Temporal Information 499

• Sentence-centric Perspective, which explicitly define the temporal va-
lidity of one or more statements annotating them with time points or
intervals.

• Relationship-centric Perspective, which encapsulates time points or in-
tervals into objects representing n-ary relations.

In the following we explain in detail the approaches proposed according to the
aforementioned perspectives.

4.1 Document-Centric Perspective

Graphs, i.e. RDF documents, can be associated with temporal meta-information
following two approaches: the first one uses HTTP-metadata, and in particular
the Last-modified field of the HTTP response header; the second one
expresses temporal meta-information using RDF statements with temporal prop-
erties taken from available vocabularies such as Dublin Core. Temporal meta-
information following these approaches, and in particular, Last-modified and
ETage properties of HTTP headers have been used for the detection of changes
in Web documents publishing RDF data [29].

Protocol-based representation. A Protocol-based representation adopts point-
based time modelling; the temporal meta-information is not persistently asso-
ciated with a Web document, but can be extracted from the HTTP header
returned in response to an HTTP GET request for the document. The temporal
meta-information associates a time point, represented by a date, with a Web
document G using a predicate a defined in the HTTP protocol according to the
schema defined as follows:

HTTP Response Header
Status: HTTP/1.1 200 OK
a : tp

Metadata-based representation. Let 〈s, p, o〉 be a statement, uG a named graph,
aG a temporal property, tp a time point; the Metadata-based representation
associates a temporal meta-information with an RDF document as follows:

〈s, p, o, uG〉
〈uG, aG, t

p, uG〉
Examples of datasets providing temporal meta-information to the documents
are: Protein knowledge base (UNIPROT) and legislation.gov.uk.

4.2 Fact-Centric Perspective

In the Fact-centric Perspective facts are associated with temporal meta-
information that constrain their temporal validity. The first RDF model proposed
to formally capture this idea is Temporal RDF [11]. In this model, RDF state-
ments are annotated with time intervals constraining their temporal validity; the

500 A. Rula et al.

intervals are interpreted over a point-based, discrete and linearly ordered tempo-
ral domain.

Temporal RDF-based representation. Let 〈s, p, o〉 be an RDF statement and
[tb; te] a time interval with a starting point tb and an ending point te, a Temporal
RDF-based representation is a temporal annotated statement having the form
〈s, p, o〉[tb:te].

The encoding of the above definition into the triple-based RDF data model
is not straightforward because RDF can “natively” represents only binary re-
lations. In order to solve this problem, several approaches for encoding the
temporal validity of facts into the standard RDF syntax have been proposed.
These approaches follow two perspectives that present significant differences: the
Sentence-centric Perspective and the Relationship-centric Perspective.

Sentence-Centric Perspective

Two strategies are adopted to represent the temporal validity of fact adopting
the Sentence-centric Perspective.

Reification-based representation. Let 〈s, p, o〉 be a statement, sst an identifier of
a statement, abS and aeS two temporal properties, and [tb:te] a time interval; a
Reification-based representation is defined as follows:

〈sst,rdf:type,rdf:Statement〉
〈sst,rdf:subject,s〉
〈sst,rdf:predicate,p〉
〈sst,rdf:object,o〉
〈sst, abS , tb〉
〈sst, aeS , te〉

The first four sentences encode the reification of the statement representing
the fact using the RDF vocabulary. The temporal properties abS and aeS link the
statements respectively to the beginning and the ending point of the time interval
[tb:te] associated with the statement. Notice that a property aS can have a time
point or a time interval as property value. As an example of datasets adopting
such approach we mention Timely Yago [30].

In the above approach, every sentence associated with a temporal annotation
has to be reified. An alternative approach allows grouping together statements
that have the same temporal validity by introducing the concept of temporal graph
[28]. Temporal graphs are named graphs annotated with timeintervals; each time
interval is represented by exactly one temporal graph, where all triples belong-
ing to this graph share the same validity period. Temporal meta-information are
collected in a default graph which occur as context in the quads.

Applied Temporal RDF-based representation. Let uTG and uG be the names re-
spectively of a temporal graph and of the default graph, abS and aeS two temporal
properties, [tb:te] a time interval and 〈s, p, o〉 a statement; the Applied temporal
RDF-based representation is defined as follows:

On the Diversity and Availability of Temporal Information 501

〈uTG, a
b
S , t

b, uG〉
〈uTG, a

e
S , t

e, uG〉
〈s, p, o, uTG〉

The temporal properties abS and aeS link the temporal graph respectively to the
beginning and the ending point of the time interval [tb:te]. More statements can
be associated with the same temporal graph. As an example of dataset that uses
such approach is EvOnt [28].

Relationship-Centric Perspective

N-ary Relationship design patterns11 are introduced to represent RDF relations
with arity greater than two. These patterns model an n-ary relation with a set
of RDF statements by (i) introducing a specific resource to identify the relation,
and (ii) creating links between this resource and the constituents of the relation
(resources and literals). These patterns can be used to associate temporal anno-
tations with facts represented by RDF statements to constrain their temporal
validity. For example, the fact “Alessandro Del Piero (ADP) plays for Juven-
tus”, which is valid within the time interval [1993,2012], can be modelled as a
quintuple 〈ADP, playsFor,Juventus,1993,2012〉 and represented following the N-
ary Relationship pattern. A resource r is introduced to identify the relation and
the temporally annotated fact can be represented by the set of RDF statements
〈ADP,playsFor,r〉, 〈r,team,Juventus〉, 〈r,from,1993〉, 〈r,to,2012〉. The direction
of the links and the strategies adopted for naming the properties can change
according to different variants of the pattern [19,25]. However, the temporal an-
notations are linked to the resources that identify a relation in all the proposed
variants. In this paper we define the N-ary Relationship-based representation
adopting the variant described in the second use case of the W3C document, the
one that occurs more frequently in the BTC corpus.

N-ary-relationship-based representation. Let 〈s, p, o〉 be an RDF statement, r a
new resource, p1 and p2 two properties, abR and aeR two temporal properties, and
[tb:te] a time interval; the N-ary-relationship-based representation is defined as
follows:

〈s, p1, r〉
〈r, p2, o〉
〈r, abR, tb〉
〈r, aeR, te〉

Although p1 and p2 can be two new properties, one of the two is usually equal
to p as in the example discussed above. As an example of dataset we mention
Freebase12.

A second approach to model temporal meta-information according to the Fact-
centric perspective is based on the concepts of fluent and timeslice [31]. Fluents

11 http://www.w3.org/TR/swbp-n-aryRelations/
12 http://www.freebase.com/

http://www.w3.org/TR/swbp-n-aryRelations/
http://www.freebase.com/

502 A. Rula et al.

are properties that hold at a specific moment in time, i.e., object properties that
change over time. The properties representing fluents link two timeslices, i.e.,
entities that are extended through temporal dimensions.

4D-fluents-based representation. Let 〈s, p, o〉 be an RDF statement, abR and aeR
two temporal properties, [tb:te] a time interval, and st and ot two timeslices asso-
ciated respectively with s and o; the 4D-fluents-based representation is defined
as follows:

〈st,rdf:type,:TimeSlice〉
〈s,:hasTimeslice,st〉
〈st, abR, tb〉
〈st, aeR, te〉
〈ot,rdf:type,:TimeSlice〉
〈o,:hasTimeslice,ot〉
〈ot, abR, tb〉
〈ot, aeR, te〉
〈st, p, ot〉

Although we could not find any dataset adopting this approach, well-known
ontologies like PROTON13 and DOLCE14 adopt it.

5 Quantitative and Qualitative Analysis

In this section we analyse and evaluate the adoption of the approaches for repre-
senting temporal meta-information. Our quantitative analysis is augmented by a
qualitative discussion in Section 5.3, based on both experiments and literature,
to highlight the advantages and disadvantages of each approach.

Please observe that some approaches cannot be detected automatically in the
data. Therefore, for certain constructs we select a random sample and manually
identify the constructs in the sample. We then scale the resulting measure to the
entire dataset, which consists of 2.1bn quads in 7.4M documents. Of those, 12.8M
were temporal quads (containing a date literal) occurring in 2.5M documents.

Analysing larger samples is infeasible due to the high manual effort involved in
checking for constructs in the entire dataset; please note that random sampling
is an established method for estimating properties of large populations (e.g., the
prediction of election outcomes use small samples and achieve sufficient accuracy
[2]). For instance, the error bound for Protocol-based representation is +/- 1.9%.
The samples used in the experiments are available online15.

Not all surveyed approaches are adopted on the web. We did not find any uses
of the Applied temporal RDF-based representation and the 4D-fluents-based
representation in the data. Table 3 gives an overview of our findings.

13 http://proton.semanticweb.org/
14 http://www.loa.istc.cnr.it/DOLCE.html
15 http://people.aifb.kit.edu/sts/data/

http://proton.semanticweb.org/
http://www.loa.istc.cnr.it/DOLCE.html
http://people.aifb.kit.edu/sts/data/

On the Diversity and Availability of Temporal Information 503

Table 3. Temporal meta-information representation approaches and the respective
occurrence compared to i) quads having temporal information; ii) overall quads in the
BTC; iii) overall documents in the BTC (n/a = not applicable, - = no occurrence).

Perspective Approach Occurrence Occurrence Occurrence

temp. quads overall quads overall docs

Document Protocol n/a n/a 9.5%

Metadata 5.1% 0.00019% 0.56%

Fact Reification 0.02% 0.0000008% 0.006%

Applied temporal RDF - - -

N-ary relationship 12.24% 0.0005% 0.6%

4D-fluents - - -

5.1 Document-Centric Perspective

To identify the use of the Protocol-based representation we ascertain how many
of the URIs that identified documents in the BTC return date information in
the HTTP header. We generate a random sample of 1000 documents (from the
context of the quads), and for each document URI in the sample we perform
an HTTP lookup to check the last-modified header in the HTTP response. We
found that only 95 out of 1000 URIs returned last-modified headers.

To identify the use of the Metadata-based representation, we select a sample
of 1000 URIs that appear in the subject position of quads with temporal in-
formation. We need to ensure that those subject URIs are in fact documents
(information resources), as the Metadata-based representation pattern is con-
cerned with documents. Thus, from the sample we exclude URIs containing the
symbol (as URIs with a # per definition do not refer to a document).

For the remaining URIs we send an HTTP request and analyse the response
code to determine whether the URI identified a document. We found that 432
(43.2%) identified documents (i.e., directly returned a 200 OK status code).
These information resources are not limited to RDF but they also include re-
sources in other formats such as HTML, MP3, XML or PDF. We manually check
for RDF documents with only the temporal meta-information such as modified
and updated, which resulted in 51 documents.

Of the 51 RDF documents with temporal meta-information in HTTP headers,
43 are also associated with metadata-based dates. Thus, for each of the 43 iden-
tified documents we compared protocol-based last-modified and metadata-based
last-modified dates. We found that protocol-based last-modified dates are more
up-to-date compared to metadata-based dates with an average of almost a year
(364 days).

5.2 Fact-Centric Perspective

We analyse the Reification-based representation in the BTC by looking for how
often reified statements contain temporal information. The pattern first iden-
tifies the quads containing predicates that are defined in the RDF reification

504 A. Rula et al.

vocabulary (i.e., rdf:subject, rdf:predicate, and rdf:object). From
the identified cases we extract only those reified statement that have temporal
meta-information associated with their subjects. In the entire BTC dataset we
found 2,637 reified statements containing temporal meta-information.

To account for N-ary-relationship-based representation we again use a com-
bination of sampling of the results of a query over the dataset with manual
verification since n-ary relations are impossible to identify just by analysing the
graph structure. Hence, we sample and manually identify occurrences.

The following pattern identifies for each document triples of the form 〈s, p, o〉
and 〈o, p∗, o∗〉 and furthermore identifies whether o is also associated with a
temporal entity. Notice that the possibility to join two triples x and y where
x.object = y.subject is a necessary, but not sufficient condition, to identify n-ary
relations. All results are contained in a set that we name scoped set consisting of
7M temporal quads. Hence, from the scoped set, we select three different random
samples of 100 triples and we manually verify if respective documents identify
an n-ary relation. Results of such manual analysis show that 10, 10 and 12 out
of 100 triples in the samples are used with an n-ary relation.

5.3 Discussion and Recommendations

In the following we discuss the results and provide recommendations for data
publishers and consumers.

The approaches that are part of the Document-centric Perspective are more
extensively adopted than the approaches of the Fact-centric Perspective. As we
hypothesised, the number of temporal meta-information associated with doc-
uments is greater than those associated with facts. Still, the use of temporal
meta-information for documents (about 10% overall) are not sufficiently high
enough to support our outlined use case.

We identify two approaches used for annotating documents with temporal
meta-information: the Protocol-based representation and the Metadata-
based representation. We notice that the number of temporal meta-
information are much more available in the Protocol-based rather than the
Metadata-based representation. The temporal meta-information in the HTTP
header, when available, are more up-to-date than the ones in the RDF document
itself. Consumers: The applications that consume temporal meta-information
should first check for temporal meta-information in the Protocol-based represen-
tation because they are more up-to-date; in case this information is not available
the applications should be able to check in the Metadata-based representation.
Publishers: Publishers should carefully update the temporal meta-information
whenever the data in the document is changed; temporal meta-information in
both Protocol- and Metadata-based representation should be consistent.

We identify four approaches used for annotating facts with temporal meta-
information, grouped into the Sentence-centric Perspective and the Relationship-
centric Perspective. These approaches associate validity expressed as temporal
entities to facts.

On the Diversity and Availability of Temporal Information 505

The use of the Reification-based representation show a high complexity
w.r.t. query processing [14]. The approach appears only in a very small number
of quads. Consumers: Consumers should be able to evaluate based on the appli-
cation scenario (e.g., the expected types of queries) if it is possible to either build
their applications over such representation or to choose a different, and more ef-
ficient approach (e.g. Applied temporal RDF-based representation). Publishers:
Publishers should be aware that best practices discourage the use of Reification-
based representations, as they are cumbersome to use in SPARQL queries [3],
even though they may be useful for representing temporal meta-information.

The performance of Applied temporal RDF-based representation has
been reported to have still some efficiency issues [28], especially in the worst
case, when the number of graphs (which are associated with temporal annota-
tions) is almost equivalent to the number of triples. Consumers: Although we
found no usage of the Applied temporal RDF-based representation in the BTC,
the approach should deserve more attention because it supports expressive tem-
poral queries based on τ -SPARQL, and can be applied to datasets that provide
temporal information according to a Reification-based representation. Publish-
ers: Publishers should take into consideration the worst case when using the
Applied temporal RDF-based representation. Therefore, they should use it only
when it is possible to group a considerable number of triples into a single graph.

The N-ary-relationship-based representation embeds time in an object
that represents a relation. In the BTC, 0.6% of documents contain at least
one case of N-ary-relationship-based representation, which is greater than the
Reification-based representation but still represents only a small fraction of the
overall number of documents. Consumers: Consumer applications can evaluate
the temporal validity of facts from representations based on this approach. The
lack of a clear distinction between plain temporal information and temporal
meta-information provides high flexibility, but at the same makes difficult to
predict the kind of temporal information that can be leveraged and interpret its
meaning. Collecting these temporal meta-information with automatic methods
is not straightforward, as shown by the manual efforts required in our anal-
ysis to identify this information. Publishers: Many situations require temporal
meta-information associated with relations that can be modelled only as complex
objects. Therefore, we recommend to publishers to use N-ary-relationship-based
representation for complex modelling tasks because it allows flexibility on rep-
resenting temporal meta-information associated with relation.

The 4D-fluents-based representation supports advanced reasoning func-
tionalities, but, probably also because of its complexity, has not been adopted
on the Web.

6 Conclusion

The key contribution of this paper is the investigation of temporal information in
Linked Data on the Web, which is important for several research and application
domains. As time introduces a further dimension to the data it cannot be eas-
ily represented in RDF, a language based on binary relations; as a result, several

506 A. Rula et al.

approaches for representing temporal information have been proposed. Based on
the qualitative and quantitative analysis using the Billion Triple Challenge 2011
dataset, we came to the conclusion that the availability of temporal information
describing the history and the temporal validity of statements and graphs is still
very limited. If the representation of temporal validity of RDF data is somewhat
more complex and can be expected to be considered in specific contexts, infor-
mation about the creation and modification of data can be published with quite
simple mechanisms. Yet, this information would have great value, e.g., when data
coming from different sources need to be integrated and fused.

As future work, we plan to develop automatic techniques for the assessment
of temporal data qualities in Linked Data, such as data currency and timeliness.
With the deeper understanding of temporal information gained through our
present analysis, we aim to capture and process a large amount of temporal
information, overcoming several limitations of preliminary work [26].

Acknowledgements. We thank Basil Ell, Julia Hoxha and Sebastian Rudolph
for their valuable comments and acknowledge the support of the EC’s Seventh
Framework Programme FP7/2007-2013 (PlanetData, Grant 257641).

References

1. Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal Information Re-
trieval: Challenges and Opportunities. In: 1st Temporal Web Analytics Workshop
at WWW, pp. 1–8 (2011)

2. Bartlett, J., Kotrlik, I., Higgins, C.: Organizational Research: Determining Ap-
propriate Sample Size in Survey Research. Information Technology, Learning, and
Performance Journal, 43 (2001)

3. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web.
linkeddata.org Tutorial (2008)

4. Cho, J., Garcia-Molina, H.: The Evolution of the Web and Implications for an
Incremental Crawler. In: The 26th VLDB, pp. 200–209 (2000)

5. Correndo, G., Salvadores, M., Millard, I., Shadbolt, N.: Linked Timelines: Tempo-
ral Representation and Management in Linked Data. In: 1st International Work-
shop on Consuming Linked Data at ISWC (2010)

6. Crocker, D.H.: Standard for the Format of ARPA Internet Text Messages. RFC
822 (1982)

7. De Sompel, H.V., Sanderson, R., Nelson, M.L., Balakireva, L., Shankar, H.,
Ainsworth, S.: An HTTP-Based Versioning Mechanism for Linked Data. In: 3rd
Linked Data on the Web Workshop at WWW (2010)

8. Fallside, D.C., Walmsley, P.: XML Schema Part 0: Primer Edition, 2nd edn. World
Wide Web Consortium (2004)

9. Grandi, F.: Introducing an annotated bibliography on temporal and evolution as-
pects in the World Wide Web. SIGMOD Record, 84–86 (2004)

10. Gutierrez, C., Hurtado, C., Mendelzon, A.O., Pérez, J.: Foundations of Semantic
Web Databases, pp. 520–541 (2011)

11. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Temporal RDF. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg
(2005)

On the Diversity and Availability of Temporal Information 507

12. Hobbs, J., Pan, F.: An Ontology of Time for the Semantic Web. Processings of the
ACM Transactions on Asian Language Information, 66–85 (2004)

13. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic
Web. In: 3rd Linked Data on the Web Workshop at WWW (2010)

14. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An
Empirical Survey of Linked Data Conformance. Web Semantics (2012)

15. Horton, M.R.: Standard for Interchange of USENET Messages. RFC 850, Internet
Engineering Task Force (1983)

16. ISO 8601. Data Elements and Interchange Formats-Information Interchange-
Representation of Dates and Times (2004)

17. Käfer, T., Umbrich, J., Hogan, A., Polleres, A.: Towards a Dynamic Linked Data
Observatory. In: 5th Linked Data on the Web Workshop at WWW (2012)

18. Kline, N.: An Update of the Temporal Database Bibliography. SIGMOD Record,
66–80 (1993)

19. Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic
Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo,
L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tu-
dorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer,
Heidelberg (2010)

20. Lee, H.T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 Billion Pages
and Beyond. In: The 17th WWW, pp. 427–436 (2008)

21. Li, P., Dong, X.L., Maurino, A., Srivastava, D.: Linking temporal records. The
VLDB Endowment (2011)

22. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: Linked Data Quality Assessment
and Fusion. In: 2nd International Workshop on Linked Web Data Management at
EDBT (2012)

23. Panziera, L., Comerio, M., Palmonari, M., De Paoli, F., Batini, C.: Quality-Driven
Extraction, Fusion and Matchmaking of Semantic Web API Descriptions. J. Web
Eng. 11(3), 247–268 (2012)

24. Popitsch, N., Haslhofer, B.: DSNotify - A Solution for Event Detection and Link
Maintenance in Dynamic Datasets. Web Semantics, 266–283 (2011)

25. Rodrıguez, A., McGrath, R., Liu, Y., Myers, J.: Semantic Management of Stream-
ing Data. In: 2nd International Workshop on Semantic Sensor Networks at ISWC
(2009)

26. Rula, A., Palmonari, M., Maurino, A.: Capturing the Age of Linked Open Data:
Towards a Dataset-independent Framework. In: 1st International Workshop on
Data Quality Management and Semantic Technologies at IEEE ICSC (2012)

27. Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Comput-
ing 12(4), 78–83 (2008)

28. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying
of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

29. Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards Dataset
Dynamics: Change Frequency of Linked Open Data Sources. In: 3rd Linked Data
on the Web Workshop at WWW (2010)

30. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting,
Querying, and Visualizing Temporal Knowledge from Wikipedia. In: The 13th
EDBT, pp. 697–700 (2010)

31. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. In:
Frontiers in Artificial Intelligence and Applications, p. 226 (2006)

[P5] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi

Studer. Data-Fu: A Language and an Interpreter for Interaction with

Read/Write Linked Data. In Proceedings of the 22nd International

Conference on World Wide Web (WWW), pages 1225–1236. 2013.

Data-Fu: A Language and an Interpreter for Interaction
with Read/Write Linked Data

Steffen Stadtmüller
Institutes AIFB, KSRI
Karlsruhe Institute of

Technology (KIT), Germany
steffen.stadtmueller@kit.edu

Sebastian Speiser
Institutes AIFB, KSRI
Karlsruhe Institute of

Technology (KIT), Germany
speiser@kit.edu

Andreas Harth
Institute AIFB

Karlsruhe Institute of
Technology (KIT), Germany

harth@kit.edu

Rudi Studer
Institutes AIFB, KSRI
Karlsruhe Institute of

Technology (KIT), Germany
studer@kit.edu

ABSTRACT
An increasing amount of applications build their function-
ality on the utilisation and manipulation of web resources.
Consequently REST gains popularity with a resource-centric
interaction architecture that draws its flexibility from links
between resources. Linked Data offers a uniform data model
for REST with self-descriptive resources that can be lever-
aged to avoid a manual ad-hoc development of web-based
applications. For declaratively specifying interactions be-
tween web resources we introduce Data-Fu, a lightweight
declarative rule language with state transition systems as
formal grounding. Data-Fu enables the development of data-
driven applications that facilitate the RESTful manipulation
of read/write Linked Data resources. Furthermore, we de-
scribe an interpreter for Data-Fu as a general purpose engine
that allows to perform described interactions with web re-
sources by orders of magnitude faster than a comparable
Linked Data processor.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Architectures

General Terms
Languages, Performance

Keywords
REST; Linked Data; Web Interaction; Rule Language; In-
terpreter

1. INTRODUCTION
There is a growing offer of functionality via web APIs1.

Increased value comes from combining data from multiple

1Alone http://programmableweb.com/ lists 7,991 APIs on
November 24th 2012, which is almost twice the number from
one year earlier.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

sources and functionality from multiple providers. The im-
portance of such compositions is reflected in the constant
growth of mashups – small programs that combine multiple
web APIs [33]. There is a strong movement in the web com-
munity toward a resource-oriented model of services based
on Representational State Transfer (REST [11]). Flexibil-
ity, adaptivity and robustness are the major objectives of
REST and are particularly useful for software architectures
in distributed data-driven environments such as the web [22].
However, data sources and APIs are published according to
different interaction models and with interfaces using non-
aligned vocabularies, which makes writing programs that
integrate offers from multiple providers a tedious task.

The goal of our work is to provide a declarative means
to specify interactions between data and functionality from
multiple providers. Such declarative specifications provide
a modular way of composing the functionality of multiple
APIs. Also, declarative methods allow for automatically
optimising a program and parallelising the execution.

In a REST architecture, client and server are supposed to
form a contract with content negotiation, not only on the
data format but implicitly also on the semantics of the com-
municated data, i.e., an agreement on how the data have
to be interpreted [32]. Since the agreement on the seman-
tics is only implicit, programmers developing client appli-
cations have to manually gain a deep understanding of the
provided data, often based on natural text descriptions. The
combination of RESTful resources originating from differ-
ent providers suffers particularly from the necessary manual
effort to use and combine them. The reliance on natural
language descriptions of APIs has led to mashup designs in
which programmers are forced to write glue code with little
or no automation and to manually consolidate and integrate
the exchanged data.

Linked Data unifies a standardised interaction model with
the possibility to align vocabularies using RDF, RDFS and
OWL. However, the interactions are currently constrained to
simple data retrieval. Following the motivation to look be-
yond the exposure of fixed datasets, the extension of Linked
Data with REST technologies has been explored [5, 34] and

1225

led recently to the establishment of the Linked Data Plat-
form2 W3C working group.

Several existing approaches recognise the value of combin-
ing RESTful services and Linked Data [17, 26, 30]. In this
paper, we go one step further and propose Data-Fu, a data-
and resource-driven programming approach leveraging the
combination of REST with Linked Data. Data-Fu enables
the development of applications built on semantic web re-
sources with a declarative rule language. The main goal of
Data-Fu is to minimise the manual effort to develop web-
based applications and the preservation of loose coupling by

• leveraging links between resources provided by Linked
Data, and

• specifying desired interactions dependent on resource
states, which is enabled by a uniform state description
format, i.e., RDF.

A further requirement for our programming approach in
a web-based environment is a fast and scalable execution
of the applications. While there has been recent work on
extending the Map/Reduce model for data-driven process-
ing [15, 4], these approaches are geared towards deployment
in data centers. In contrast, our approach operates on the
networked open web.

This paper is based on a previous publication on a data-
driven programming model for the web [27] and describes

• how self-descriptive resources can be designed to en-
able loosely coupled clients (Section 4.1);

• a service model for REST based on state transition
systems as formal grounding (Section 4.2);

• the Data-Fu language, a declarative rule-based exe-
cution language to allow an intuitive specification of
the interaction with resources from different providers
(Section 5);

• an execution engine as an artefact to perform the de-
fined interactions in a scalable manner (Section 6).

We provide a motivating scenario in Section 2. We eval-
uate our approach in two ways: (i) we describe throughout
the paper how our motivating scenario can be realised with
Data-Fu; and (ii) we conduct performance experiments with
the Data-Fu interpreter in Section 7. Section 8 covers exist-
ing work. We conclude in Section 9.

2. MOTIVATING SCENARIO
In our scenario, we consider the Acme corporation, a con-

sumer goods producer, that aims at extending their social
media activities to a broader range of dissemination channels
(for more on multi-channel communication see [7]). Acme’s
marketing department observes that while the number of po-
tential channels is constantly increasing, the channels can be
broadly categorised into micro blog services and social net-
works. Information about new products, special offers, and
other news should be disseminated in the following ways:
(i) posts on the company’s micro blogs; and (ii) messages to
social network users who are followers of the company.

We assume that the dissemination channels offer Linked
APIs, i.e., resources are exposed that offer read/write Linked
Data functionality.3

2http://www.w3.org/2012/ldp/charter
3If there is no Linked API available, the conventional APIs
can be easily wrapped to consume and produce RDF, see,
e.g., [29, 17]. Wrapping APIs is out of scope of this paper.

Table 1: URI prefixes used throughout this paper

Prefix IRI
acme: http://acme.example.org/company/
p: http://acme.example.org/vocabulary/
sna: http://sna.example.org/lapi/
snb: http://snb.example.org/rest/
mb: http://mb.example.org/interface/

The marketing department orders a system from Acme’s
IT that manages the dissemination channels and automati-
cally disseminates a post to all available channels either as
a micro blog entry or as a personal message. Initially the
micro blog service MB and the social network SNA have
to be supported. Marketing will supply their posts in an
Acme-specific vocabulary as so-called InfoItems.

After a while, the marketing department decides to add
the new social network SNB as a dissemination channel,
which requires two steps: (i) the IT department extends the
dissemination system to support the interface of SNB; and
(ii) the marketing department adds Acme’s identity in SNB
to the dissemination channels.

Throughout the paper, we will illustrate our technical con-
tributions by realising bits and pieces of the proposed sce-
nario. When modeling services and interactions, we will use
a number of URI prefixes for brevity that are either com-
mon4 or listed in Table 1.

3. BACKGROUND
According to the Richardson maturity model [24] REST

is identified as the interaction between a client and a server
based on three principles:

• The use of URI-identified resources.
• The use of a constrained set of operations, i.e., the

HTTP methods, to access and manipulate resource
states.

• The application of hypermedia controls, i.e., the data
representing a resource contains links to other resources.
Links allow a client to navigate from one resource to
another during his interaction.

The idea behind REST is that applications, i.e., clients, us-
ing functionalities provided on the web, i.e., APIs, are not
based on the call of API-specific operations or procedures
but rather on the direct manipulation of exposed resource
representations or the creation of new resource representa-
tions. A resource can be a real world object or a data object
on the web. The representation of a resource details the
current state of the resource. A manipulation of the state
representation implies that the represented resource is ma-
nipulated accordingly. For brevity in this paper we often
talk about ”the manipulation of a resource”, when we actu-
ally mean ”the manipulation of the state representation of a
resource and the subsequent change of the resource itself”.

The flexibility of REST results from the idea that client
applications do not have to know about all necessary re-
sources. The retrievable representations of some known re-
sources contain links to other resources, that the client can

4See http://prefix.cc/ for their full URIs, accessed on
November 22nd 2012.

1226

discover during runtime. Clients can use such discovered
resources to perform further interaction steps.

The Linked Data design principles5 also address the use
of URI-identified resources and their interlinkage. However
Linked Data is so far only concerned with the provision-
ing and retrieval of data. In contrast to REST, Linked
Data does distinguish explicitly between URI-identified ob-
jects (i.e., non-information resources) and their data repre-
sentation (information resources). An extension of Linked
Data with REST to allow for resource manipulation leads to
read/write Linked Data, i.e., information resources can be
accessed and manipulated. REST furthermore implies that
a change of an information resource implies a change in the
corresponding non-information resource.

The development of applications in a REST framework
is especially challenging, since the links between resources
and the resource states can only be determined during run-
time, however, programmers have to specify their desired
interactions at design time.

Traditional service composition approaches that aim to
decrease the manual effort to use web-offered functional-
ity lead to a tight coupling between client and server, i.e.,
they sacrifice flexibility and are prone to failures due to
server-side changes. Traditional composition approaches of-
ten fail to leverage links between resources and do not pro-
vide straightforward mechanisms to dynamically react to
state changes of resources. The reaction on state changes
becomes especially important in a distributed programming
environment, since a client cannot ex ante predict the influ-
ence of other clients on the resources, i.e., REST does not
allow a client to make assumptions on resource states.

4. READ/WRITE LINKED DATA
In this section, we describe our approach for modelling of

RESTful services based on Linked Data. Our approach has
two layers:

• Individual Read/Write Linked Data Resources with
descriptions that allow predicting the effect of the exe-
cution of a functionality before invocation (Section 4.1);

• A formal REST Service Model. A single REST ser-
vice can consist of several resources, potentially spread
over different servers. The service model is the ground-
ing for describing the interactions that are offered by
the individual RESTful Linked Data resources and the
overall service (Section 4.2).

4.1 Read/Write Linked Data Resources
In a RESTful interaction with Linked Data resources only

the HTTP methods can be applied to the resources. The se-
mantics of the HTTP methods itself is defined by the IETF6

and do not need to be explicitly described.
Table 2 shows an overview of the most important HTTP

methods. We can distinguish between safe and non-safe
methods, where safe methods guarantee not to affect the
current states of resources. Further, some of the methods
require additional input data to be provided for their in-
vocation. The communicated input data can be subject to
requirements that need to be described to allow an auto-
mated interaction, e.g., the input data can be required to
use a specific vocabulary. Furthermore, the effect of a non-

5http://www.w3.org/DesignIssues/LinkedData.html
6http://www.ietf.org/rfc/rfc2616.txt

Table 2: Overview of HTTP methods
Method Safe Input

required
Intuition

GET x Retrieve the current
state of a resource.

OPTIONS x Retrieve a descrip-
tion of possible inter-
actions.

DELETE Delete a resource
PUT x Create or overwrite

a resource with the
submitted input.

POST x Send input as subor-
dinate to a resource
or submit input to
a data-handling pro-
cess.

safe method on the state of an addressed resource can de-
pend on the input data. The dependency between commu-
nicated input and the resulting state of resources also needs
to be described. Therefore, only the non-safe HTTP meth-
ods that require input data need further description mecha-
nisms. Note, the POST method can also influence the states
of not directly addressed resources. The precise effect of a
POST depends on the resource, since POST allows to send
input data to a data-handling process of a resource.

The state of a Linked Data resource is expressed with
RDF. It is sensible to serialise the input data in RDF as well,
i.e., data that is submitted to resources to manipulate their
state. To convey the resulting state change after application
of a HTTP method we use RDF output messages. In previ-
ous work [20] we analysed the potential of graph patterns,
based on the syntax of SPARQL7, to describe required input
as well as their relation to output messages. The resulting
graph pattern descriptions are attached to the resource and
can be retrieved via the OPTIONS method on the respec-
tive resource. Therefore the resources stay self-descriptive,
i.e., their current state can be retrieved with GET, the pos-
sibilities to influence their state with OPTIONS.
Example. Acme’s IT creates the resource acme:Acme rep-
resenting Acme. A GET on acme:Acme returns the following
initial description: acme:Acme rdf:type p:Company .
The marketing department updates the acme:Acme resource
with the dissemination channels SNA and MB by perform-
ing a PUT with the following input data:
acme:Acme rdf:type p:Company .
acme:Acme p:dissChannel sna:Acme, mb:Acme .
sna:Acme rdf:type p:SocialNetworkID .
mb:Acme rdf:type p:MicroBlogTimeline .

A subsequent GET on acme:Acme would result in exactly the
description that marketing supplied with their PUT request.

A GET on sna:Acme, Acme’s identifier in the social net-
work SNA, would result in a description of Acme in SNA’s
vocabulary including its fans:
sna:Acme rdf:type sna:CommercialOrganisation .
sna:Acme sna:founded "11/20/2012" .
sna:Acme sna:hasFan sna:User1, sna:User2,

The resources representing users in the SNA network provide

7http://www.w3.org/TR/rdf-sparql-query/
#GraphPattern

1227

functionality to send messages to the corresponding users.
A POST can be employed to send a message to a user re-
source (e.g., to sna:User1). The input data for the POST
contains its sna:sender and its sna:content, according to
the description of the user resource that can be retrieved
with an OPTIONS request:
INPUT: ?m rdf:type sna:Message .

?m sna:sender ?s .
?m sioc:content ?c .

OUTPUT: ?m sna:sender ?s .
?m sioc:content ?c .
?m sna:receiver sna:User1 .

Acme’s timeline mb:Acme on the micro blogging service
MB also supports the POST operation. Figure 1 illustrates
the timeline resource mb:Acme of our example, with a set
of entries in the current state and the graph pattern that
describe how a new entry can be POSTed.

Applying a DELETE on a blog post, e.g., one that ad-
vertises an expired sale, does not require input; its effect is
inherently defined by the method: the entry is erased.

4.2 REST Service Model
A REST service can be identified with the resources it

exposes. An interaction within a REST architecture is based
on the manipulation of the states of the exposed resources.

We develop a model, that allows to formalise the function-
alities exposed by a REST API based on read/write Linked
Data resources. A formal service model serves as rigorous
specification of how the use of individual HTTP methods
influences resource states and how these state changes are
conveyed to interacting clients.

We model a Linked Data-based RESTful service as a REST
state transition system (RSTS) similar to a state machine
as defined by Lee and Varaiya [18]. The behavior of the
clients themselves is not in the scope of this model, it rather
formalises all possible interaction paths of a client with the
resources.

Definition 1. A REST state transition system (RSTS)
is defined as a 5-tuple RSTS = {R,Σ, I,O, δ} with:

• A set of resources R = {r1, r2, ...}.
• A set of states Σ = {σ1, ...,σm}. Each state σk ∈ Σ

of the RSTS is defined as the union of the states of
all resources: σk =

⋃
ri∈R rki . The state of a single

resource ri ∈ R in a state σk is given by its RDF
representation rki ∈ G, where G is the set of all possible
RDF graphs.

• An input alphabet I = {(r, µ, g) : R ×M × G}, where
M = {GET,DELETE,PUT,POST} is the set of the
supported HTTP methods8.

• An output alphabet O = {(c, o) : C × G}, where C is
the set of all HTTP status codes.

• An update function δ : Σ × I → Σ × O that returns
for a given state and input the resulting state and the
output. We decompose δ into a state change function
δs : Σ× I → Σ and an output function δo : Σ× I → O,
such that δ(σ, i) = (δs(σ, i), δo(σ, i)). We define the

8For brevity we focus here on the four most important meth-
ods. Other methods can be added analougously.

state change function as

δs(σk, (ri, µ, g)) =

σk, if µ = GET

σk \ {rki }, if µ = DELETE

(σk \ {rki }) ∪ g, if µ = PUT

posti(σk, g), if µ = POST,

where the function posti encapsulates the resource spe-
cific behaviour of a POST request, as described by its
INPUT/OUTPUT patterns, which can be obtained via
an OPTIONS request on the resource. Let σl be the
new state as defined by δs, we define the output func-
tion as

δo(σk, (ri, µ, g)) =

(c , rki), if µ = GET

(c , ∅), if µ = DELETE

(c ,σ l\σk), if µ = PUT

(c ,σ l\σk), if µ = POST.

A client interacting with a service modelled by anRSTS =
{R,Σ, I,O, δ} creates an input i = (ri, µ, g) for RSTS by in-
voking the HTTP method µ on the resource ri and passing
the potentially empty RDF graph g in the request body. De-
pending on the current state σk of the service the following
happens:

1. The service transitions into the state δs(σk, (ri, µ, g)).
2. The client gets an HTTP response with the HTTP

code c and the RDF graph g′ in the body, where (c, g′) =
δo(σk, (ri, µ, g)).

Safe methods that do not change any resource states, de-
scribe self-transitions, i.e., transitions that start and end in
the same state.

The output function in the case of PUT and POST report
to the client the effect the invocation of the method had on
the state of the RSTS (i.e. σl\σk).

Resources do not necessarily allow the use of all HTTP
methods. Note that all state change functions are defined
for every resource, i.e., every resource can be addressed with
all methods: If a resource does not allow for the application
of a specific method, the state change function describes a
self-transition.

The defined service model serves as formal grounding of
the execution language described in Section 5. However, the
self-descriptive resources provide sufficient information for
the interaction with the exposed resources.

• The current state of Linked Data resources – and there-
fore the state of the RSTS – can be accessed as RDF.

• The possible transitions and the state they result in are
independent of the specific resource, except for POST
transitions. The effect of POST transitions is declared
with graph pattern descriptions (see Section 4.1).

Example. Figure 2 illustrates a state transition in RSTS
where an entry is POSTed to mb:Acme. Note, that a client
could derive the input for the POST method from the states
of other resources (e.g., from Acme InfoItems).

5. THE DATA-FU LANGUAGE
In this section, we present Data-Fu9, an execution lan-

guage to instantiate a concrete interaction between a client

9We use the name Data-Fu in adaption of the term google-
fu, which adopts the suffi xFu of from Kung Fu, implying
great skill or mastery. Thus Data-Fu hints at the mastery
of data interaction that can be achieved with the language.

1228

Figure 1: Self-descriptive resource: current state can be accessed with GET, input/output description with
OPTIONS

Figure 2: State transition of a RSTS, with excerpts of two states.

and resources, which preserves the adaptability, robustness
and flexibility of REST.

In a resource-driven environment, applications retrieve
and manipulate resources exposed on the Web. Since the re-
sources can potentially be accessed by a multitude of clients,
applications have to react dynamically on the state of the re-
sources. Therefore, an important factor in the development
of resource-driven applications is the dependency between
the invoked transitions and resource states. The dependency
between the invoked state transitions (i.e., applied HTTP
methods) and the states of resources is that

1. input data for the transition is derived from RDF de-
tailing the states of resources and/or

2. the transition is only invoked, if resources are in a spec-
ified state.

Data-Fu, a declarative rule-based execution language, en-
ables programmers to define their desired state transitions.
Data-Fu rules specify the interaction of a client with REST-
ful Linked Data resources and congruously a path through
the RSTS. Further Data-Fu allows to specify the conditions
under which a specific transition is to be invoked as subject
to the states of resources.

Definition 2. A rule ρ is of the form µ(r, g) ← q,
where µ ∈ M is an HTTP method, r ∈ R ∪ V is a resource
or a variable with V the set of all variables, g ∈ G ∪ P is a
(potentially empty) RDF graph or graph pattern, and q ∈ P
is a conjunctive query with P the set of all possible RDF
graph patterns. If r is a variable, it must be bound in q. If
g is a graph pattern, all its variables must be bound in q.

The head of a rule corresponds to an update function of
the RSTS in that it describes an HTTP method that is to
be applied to a resource. The rule bodies are conjunctive
queries that allow programmers to express their intention
under which condition a method is to be applied. Thus,

programmers can define an interaction pattern with a set of
rules for their client applications.

The use of conjunctive queries is motivated by the idea
that clients have to maintain a knowledge space (KS) in
which they store their knowledge about the states of the re-
sources they interact with [17, 25]. KS is filled with the RDF
data the client receives after applying an HTTP method, as
defined by the output functions of the RSTS. The output
always informs the client about the current state after the
application of the method.

Concretely N3 graph patterns are employed as queries q,
which are evaluated over KS. If the evaluation of q is suc-
cessful, i.e., matches are found in KS, the defined HTTP
method µ is applied to r with input g. The query q can also
be used to dynamically (i.e., during runtime)

1. derive input data from the states of other resources, as
stored in KS and

2. identify the resource to which an HTTP method has
to be applied, i.e., leveraging hypermedia controls.

Regarding 1: Instead of specifying the input data g explicitly
as RDF graph, a graph pattern can be used. If a match is
found for q in KS, the identified bindings for q are used to
replace the variables in g to establish the input data for the
interaction (with HTTP method µ at resource r). g as graph
pattern and q act together similar to a SPARQL construct
query over KS, where the result of the query is used as input
data for the invocation of the method µ.

Regarding 2: To preserve the flexibility provided by REST
our execution language has to be able to make use of links
in the resource states to other resources. Rather than spec-
ifying the addressed resource r of a rule explicitly as URI,
a variable can be used. If a match is found for q in KS, an
identified binding for a variable q is used for the variable r.
r as variable and q act together as a SPARQL select query
to identify the targeted resources of method µ.

1229

A Data-Fu program terminates when there are no active
transitions and no rules can be activated that could trig-
ger new transitions. In general, termination of a program
cannot be guaranteed, as every transition can result in data
that triggers new transitions. However, the termination of a
program is not necessarily intended by a programmer, in the
case of applications that are supposed to continuously inter-
act with resources. Furthermore, the deletion and change of
resources can lead to applications with a non-deterministic
execution behavior. For discussions about properties of rule
sets in related languages that guarantee termination and de-
terminism, we refer the reader to [2].
Example. The IT department of Acme creates the dis-
semination system with four Data-Fu rules. The market-
ing department has simply to create new InfoItems and the
system automatically distributes the information over the
dissemination channels of Acme. The rules are defined as
follows:

1. Whenever a InfoItem is found, retrieve the resource
acme:Acme to get an up-to-date list of the current dis-
semination channels.
GET (acme:Acme, {}) ← { ?x rdf:type p:InfoItem }

2. If a p:MicroBlogTimeline is found (from the retrieved
dissemination channels), post a new entry to the time-
line using the content from the InfoItem.
POST (?mb, { [] rdf:type sioc:Post ;

sioc:content ?c . })
← { ?x rdf:type p:InfoItem .

?x p:content ?c .
?mb rdf:type p:MicroBlogTimeline } .

3. If a social network ID of Acme is found (from the re-
trieved dissemination channels), retrieve the represen-
tation of Acme from the social network to get a list of
Acme’s followers.
GET (?sid, {})

← { ?sid rdf:type p:SocialNetworkID } .

4. Post to every found follower of Acme on SNA a mes-
sage with the content of the InfoItem.
POST (?f, { [] rdf:type sna:Message ;

sna:sender sna:Acme ;
sna:content ?c . })

← { sna:Acme sna:hasFan ?f .
?x rdf:type p:InfoItem .
?x p:content ?c }.

The described rules disseminate new information items au-
tomatically to social network SNA and the micro blog MB.
IT deploys the dissemination system itself as a read/write
Linked Data resource under acme:Dissemination. Market-
ing uses the dissemination service by POSTing a graph to
the dissemination resource that corresponds to the following
input pattern:
{ ?x rdf:type p:InfoItem. ?x p:content ?c } .

Other dissemination channels can easily be added to the
system, simply by adding corresponding rules in the system.
For example, we consider that IT adds support for social
network SNB by adding a rule that uses SNB’s vocabulary
for retrieving followers and sending a message:

POST (?f, { [] rdf:type snb:PrivateMsg ;
snb:origin snb:ACME ;
snb:text ?c . })

← { snb:ACME snb:followedBy ?f .
?x rdf:type p:InfoItem .
?x p:content ?c }.

The new dissemination channel is active when marketing
PUTs Acme’s identifier in SNB’s network to acme:Acme.

6. THE DATA-FU INTERPRETER
The Data-Fu interpreter is an execution engine for service

interactions specified as a set of Data-Fu rules. The engine
implements the KS as well as the functionality to invoke in-
teractions with resources as defined in the rules. In practice,
we translate a Data-Fu program into a logical dataflow net-
work, which is then optimised (e.g., re-using triple patterns
and joins). The optimised logical network is then trans-
formed into an evaluator plan that actually implements the
dataflow network.

We realise the evaluator plan for the Data-Fu engine as
a streaming processor that can process several queries in
parallel. We implement the processor as a multi-threaded
component with one thread evaluating individual triple pat-
terns, and separate threads for each join operator and for
each rule head, i.e., the component that performs the state
transitions by invoking the corresponding HTTP methods
on resources. The joins are implemented as symmetric hash
join operators [35]. The implemented dataflow network is
similar to a parallel version of the Rete algorithm [12].

To enable a wide variety of applications the engine can
include an extension to support the interaction with REST
resources that are not based on Linked Data. The engine can
store data entities (e.g., binaries, JSON documents) received
from such services separately. A triple pointing to a received
non-RDF entity can be included in KS, thus the entities can
be used in the logic of the execution rules. However, an
interaction with such non-RDF entities requires to fall back
to a more mashup-like programming approach.
Example. The dataflow network shown in Figure 3 evalu-
ates the plan generated for the Data-Fu program for Acme’s
dissemination system. We can see that joins (e.g., the join
on ?x) are re-used, i.e., have multiple outgoing edges. The
triple stream is initialised by the service input, which is sent
by the client via a POST request. If the input data con-
tains a description of an information item, it will trigger
the rule retrieving Acme’s description containing links to
its dissemination channels. The social networks will fire a
rule, which then retrieves the social network id’s of Acme
and thus retrieve the corresponding followers. Both social
network followers and micro blog timelines will then trigger
the corresponding POST actions that will sent the informa-
tion item in the appropriate vocabulary to the dissemination
channels, i.e., as micro blog posts or personal messages to
the followers.

7. EVALUATION
To evaluate the scalability of the Data-Fu engine we com-

pared execution times for different numbers of interactions
and rules with Cwm10, a data-processor for the Semantic
Web. Cwm uses a local triple store that supports the full
N3 language to save data and intermediate results. The local

10http://www.w3.org/2001/sw/wiki/CWM

1230

Triple Stream

?x rdf:type p:InfoItem ?x p:content ?c

?x

?sid rdf:type p:SocialNetworkIDGET(?sid, {})

GET(acme:Acme, {})

POST(?f, { [] rdf:type snb:PrivateMsg ;
POST(?f, { [] snb:origin snb:ACME ;
POST(?f, { [] snb:text ?c . })

?mb rdf:type p:MicroBlogTimeline

sna:Acme sna:hasFan ?f

X

X

X snb:ACME snb:followedBy ?f

?x

pattern

Data-Fu Rule Head

Join on variable ?x

Triple pattern matcher

Dataow

Service Input

X Cross-product

POST(?mb, { [] rdf:type sioc:Post ;
POST(?mb, { [] sioc:content ?c . })

POST(?f, { [] rdf:type sna:Message ;
POST(?f, { [] sna:sender sna:Acme ;

POST(?f, { [] sna:content ?c . })

Input POSTed to Service

Figure 3: Dataflow network of Acme’s dissemination system

triple store of Cwm uses seven indices to allow for a rapid
readout of the local data with almost every combination
of subject, predicate and object patterns. For inferencing
Cwm uses a forward chain reasoner for N3 rules. The pat-
tern matching for the rules is done by recursive search with
optimisations, such as identifying an optimal ordering for
the evaluation of the rules and patterns.

Cwm is built as a general purpose tool to query, process,
filter and manipulate data from the Semantic Web. As such,
the motivation behind Cwm is closest to the Data-Fu engine,
compared with any other rule engines or reasoning systems,
to the best of our knowledge. However, Cwm is not tar-
geted on the direct RESTful manipulation of web resources,
but their retrieval and the local manipulation of the data.
Therefore to make the systems comparable we limit the eval-
uated interactions to GET transitions, i.e., we use only rules
that retrieve resources, if a match for the rule body is found.
Please note that the limitation to GET transitions does not
influence the validity of the evaluation: Since additional ex-
ecution time when using non-safe interactions (e.g., PUT,
POST) only results from time required to transmit data to
resources and the subsequent time necessary to process this
data by the server, where the resource resides. This time
overhead caused by non-safe transitions is neither influenced
by the Data-Fu engine, nor could it be avoided by any other
system that we could use as comparison.

We conducted the experiments on a 2.4 GHz Intel Core 2
Duo with 4 GB of memory (2 GB assigned to Java virtual
machine on which the experiments run). Thus we evaluate
the Data-Fu engine on commodity hardware with the intent
to show the parallelisation-based scalability of the Data-Fu
engine not only on high-end industrial machines.

We deploy Linked Data resources used for the interactions
locally on an Apache Tomcat11 server to further minimise
execution time variations caused by establishing HTTP con-
nections and retrieving data over the web. In the rules used
by the Data-Fu engine and Cwm the resources are addressed
with their localhost address. Every deployed resource repre-
sents a number. Every number resource is typed as number
and contains its value as literal and a link to the successor
of the number:

11http://tomcat.apache.org/

local:1 rdf:type local:number.
local:1 local:value "1".
local:1 local:successor local:2.

We chose this design to easily keep track of the number
of performed interactions.

For the evaluation we start with the resource number 0,
which we manually inject into the Data-Fu engine and Cwm.
We identify and retrieve the successor of the number. The
successor of a number yields a new successor to retrieve,
and so on. The interactions of this set-up are illustrated in
Figure 4.

Figure 4: Interactions of evaluation set-up with one
rule

We realise the interactions with the Data-Fu Engine and
Cwm (for the latter in two different ways) as follows:

• Data-Fu: For the Data-Fu engine we use a rule:

GET (?suc, {}) ← {?n rdf:type local:number
?n local:value ?v
?n local:successor ?suc}

The rule body queries for a resource (variable ?n) that
is typed as number, has a value and a successor. If
a match is found, a GET transition is triggered at
whatever URI is identified to be the successor of the
matched number. The Data-Fu engine adds the re-
trieved representation of the successor to the data flow
network, which results in the identification of the next
successor to retrieve. Thus, all numbers are iteratively
found and retrieved.

• Cwm direct: Cwm offers built-in functions to perform
web-aware queries in rules. The keyword log:semantics
in a query of a rule allows to resolve a URI and bind
the retrieved RDF data to a variable as formula. The
formula bound to a variable can then be used to con-
struct triples in the rule head. We used the following
rule to perform the desired interaction:

1231

{{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }

local:is local:known. }
:suc log:semantics :sem.
⇒

{ :sem local:is local:known. }
Like in the approach for the Data-Fu engine we query
for the successor of a number. The successor is re-
trieved and bound as formula in subject position to a
new triple that is written to the triple store. Since the
retrieved representation of the number appears only as
formula in triples we have to extend the query in the
rule body to search for the successor of a number in
a formula in subject position of a triple, thus making
the query slightly more complicated than in the case of
the Data-Fu engine. Cwm repeatedly applies the rule
to the triple store, thus retrieving all numbers.

• Cwm import: To compare the performance of Cwm
with the Data-Fu engine, where the queries of the rules
are equally complex, we implemented the desired re-
trieval with another approach, with the following rule:

{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }

⇒
{ :n owl:imports :suc. }

We use the same query to identify the successor of
a number as for the Data-Fu engine. For every found
match we write a triple to the Cwm store, that marks
the identified successor with owl:imports. Cwm of-
fers a command to retrieve all resources marked with
owl:imports. This allows us to programmatically in-
struct Cwm to apply the rule and retrieve the suc-
cessor, as many times as needed. Note, that this im-
plementation of the interaction does not deliver the
same functionality as with the Data-Fu engine: We
have to manually define how often the rule followed by
the retrieve command is to be applied (once for every
number), rather then having the engine automatically
retrieve all the numbers.

We evaluate the execution time of the interaction with
all three setups for sets of 20, 40, 60, 80 and 100 numbers.
With the approaches Data-Fu and Cwm direct the interac-
tion ends when the last number in a set does not refer to a
next successor to retrieve. For Cwm import we had to decide
manually how often the rule is applied and thus how many
numbers are retrieved and when the interaction stops. The
results are shown in Table 3 and Figure 5. We provide the
average execution times from ten runs to reduce variations.

Table 3: Average execution time from ten runs for
different evaluation set-ups with one rule

number set size Data-Fu Cwm direct Cwm import
20 342 ms 1549 ms 468 ms
40 371 ms 5144 ms 976 ms
60 500 ms 11272 ms 1595 ms
80 555 ms 21005 ms 2309 ms
100 594 ms 32213 ms 3688 ms

Figure 5: Average execution time from ten runs for
different evaluation set-ups with one rule

The Data-Fu engine is able to execute the interaction by
orders of magnitude faster than the other two approaches
with Cwm. Also the growth-rate of the execution time with
the increasing size of number sets is much lower with Data-
Fu compared to the Cwm approaches (note the log scale in
Figure 5). The Data-Fu engine achieves this time saving by
leveraging the data flow network: Data-Fu has just to put
the new results after an interaction through the data flow
network to find new bindings. Cwm on the other hand has
to apply the rules repeatedly over the increasing dataset in
its triple store.

To evaluate the capabilities of the Data-Fu engine with re-
gard to parallelisation we run the same interaction of retriev-
ing successors of numbers again, with ten different ”kinds”
of numbers (A-J) in parallel. The numbers are distinguished
by different namespaces. Each of the three evaluation set-
ups requires ten rules for the interaction (each addressing
another namespace), analog to the previously shown rules.
Figure 6 illustrates this evaluation set-up.

Figure 6: Interactions of evaluation set-up with one
rule

The results for the different evaluation set-ups are shown
in Table 4 and Figure 7 as average from ten runs. Again
Data-Fu executes the interaction significantly faster with a
lower growth rate than Cwm in the other set-ups: In the case
of the most interactions (10 x 100) Cwm direct requires over
17 minutes and Cwm import over 32 seconds, the Data-Fu
engine handles the same interactions in under 4 seconds.

1232

Table 4: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

number set size Data-Fu Cwm direct Cwm import
20 1833 ms 22513 ms 2836 ms
40 2421 ms 108421 ms 7067 ms
60 2916 ms 310498 ms 13518 ms
80 3889 ms 621798 ms 21729 ms
100 3944 ms 1038524 ms 32983 ms

Figure 7: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

Comparing the results of the interactions with a single rule
and the interactions with ten rules in parallel we note, that
the Data-Fu engine suffers less than Cwm from the ten times
increased workload when executing ten rules in parallel. On
average for the individual sizes of number sets

• Data-Fu requires 6.2 times longer,
• Cwm direct requires 25 times longer,
• Cwm import requires 8 times longer,

when running with ten rules compared to one single rule.
The reason for this time advantage is the capability of the

Data-Fu engine to execute several components of the inter-
action in parallel, e.g., the evaluation of the triple patterns
of the queries and the communication with several web re-
sources. Note, that the theoretically possible speedup due
to parallelisation on a dual core system implies that a 10
times increased workload results in a 5 times longer execu-
tion time. However, the Data-Fu engine cannot quite reach
this optimal speedup, since not all parts in the interaction
can be completely parallelised, e.g., the management of the
individual threads. These parts of an interaction that can-
not be completely parallelised result in a slightly diminished
speedup, as stated by Amdahl’s Law [3].

Following the results of the evaluation in comparison with
Cwm, we devise a final evaluation setting to test the scala-
bility of the Data-Fu engine when performing large amounts
of interactions. Similar to the previous evaluation setting we
retrieve number resources that are identified during runtime
as successor of an already found number. We fix the size
of the number sets to 100, i.e., we deploy sets of 100 con-
secutive number resources that are distinguished with their
namespace. Then we retrieve the numbers of every set with
a respective rule. We evaluate the runtime of the Data-Fu

engine with 20, 40, 60, 80 and 100 rules/number sets, thus
performing between 2 000 and 10 000 interactions. Addition-
ally we measure the time needed to calculate the evaluation
plan separately to compare it with the total execution time.
The results are shown in Table 5 and Figure 8.

Table 5: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

rules/number sets execution time evaluation plan
20 8357 ms 4 ms
40 17195 ms 6 ms
60 30767 ms 7 ms
80 49430 ms 8 ms
100 75764 ms 9 ms

Figure 8: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

The results of the evaluation for large amounts of interac-
tions show that the Data-Fu engine scales well up to thou-
sands of interactions even on commodity hardware. The
Data-Fu engine is capable of interacting with 10 000 web
resources in about 1:15 min. The necessary time required
to establish the evaluation plan increases with the number
of rules, but remains a very small fraction of the overall
execution time and is therefore negligible.

The evaluation shows the advantages of the parallel pro-
cessing of queries and interactions and provides evidence
that the Data-Fu engine is capable of performing rapid inter-
actions with web resources as desired. We did not consider
the necessary time to establish HTTP connections on the
web and the response time of the servers, where resources
are deployed, since these additional time requirements would
be the same for any employed interaction system. Note how-
ever, that due to its parallel processing nature, the Data-Fu
engine could further benefit from longer response times of
servers compared to other systems: At the same time as the
Data-Fu engine performs the manipulations and retrieval of
resources other rules can be evaluated, thus the overall exe-
cution time can be minimised.

We provide the data used for the evaluation and an exe-
cutable jar online12 to re-run the experiments.

12http://people.aifb.kit.edu/sts/datafu/evaluation/

1233

8. RELATED WORK
Pautasso introduces an extension to BPEL [21] for a com-

position of REST and traditional web services. REST ser-
vices are wrapped in WSDL descriptions to allow for a BPEL
composition. Our approach focuses on a native composition
of REST services, rather than relying on technologies of tra-
ditional web services. For a comparison between RESTful
services and “big” services see [23].

There exist several approaches that extend the WS-* stack
with semantic capabilities by leveraging ontologies and rule-
based descriptions (e.g., [28, 10, 8]) to achieve an increased
degree of automation in high level tasks, such as service
discovery, composition and mediation. Those approaches
extending WS-* became known as Semantic Web Services
(SWS). An Approach to combine RESTful services with
SWS technologies in particular WSMO-Lite [31] was inves-
tigated by Kopecky et al. [16]. In contrast to SWS, REST
architectures do not allow to define arbitrary functions, but
are constrained to a defined set of methods and are built
around another kind of abstraction: the resource. There-
fore our approach is more focused on resource/data centric
scenarios in distributed environments (e.g., in the Web).

Active XML introduces service calls as XML nodes that
are placeholders for new XML documents that can be re-
trieved from the service [1]. The service calls are compara-
ble to hypermedia links in resource descriptions and the ac-
tive XML document corresponds to the knowledge space. In
contrast to Active XML, our work discovers links to new re-
sources instead of links to function calls. The resource model
provides more flexibility, e.g., a Data-Fu program could per-
form a DELETE on a discovered resource, whereas the Ac-
tive XML equivalent would be constrained to the predefined
operations in the original link.

The scripting language S [6] allows to develop Web re-
sources with a focus on performance due to parallelisation
of calculations. Resources can make use of other resources in
descriptions, thus also enabling a way of composing REST
services. S does not explicitly address the flexibility of REST
and has no explicit facilities to leverage hypermedia controls
or to infer required operations from resource states.

RESTdesc [30] is an approach in which RESTful Linked
Data resources are described in N3-Notation. The composi-
tion of resources is based on an N3 reasoner and stipulates
manual interventions of users to decide which hypermedia
controls should be followed.

Hernandez et al. [14] proposes a model for semantically
enabled REST services as a combination of pi-calculus [19]
and approaches to triple space computing [9] pioneered by
the Linda system [13]. They argue, that the resource states
can be seen as triple spaces, where during an interaction
triple spaces can be created and destroyed as proposed in an
extension of triple space computing by Simperl et al. [25].
Our service model is in contrast to this approach more fo-
cused on the composition of data driven interactions.

Similar to the idea of triple spaces is the composition of
RESTful resources in a process space, proposed by Krum-
menacher et al. [17] based on resources described using
graph patterns. Speiser and Harth [26] propose similar de-
scriptions for RESTful Linked Data Services. Our approach
shares the idea that graph pattern described resources read
input from and write output to a shared space. We improve
on this approach by providing a service model and a more
explicit way of defining the interaction with resources.

9. CONCLUSION
In this paper, we addressed the problem of creating value-

added compositions of data and functionalities. As a unify-
ing model for both static data sources and dynamic services,
we described how Linked Data Resources can be extended
with descriptions for RESTful manipulation. The natural
extension of Linked Data with RESTful manipulation of re-
sources enables a framework with uniform semantic resource
representations for REST architectures. We have proposed
to exploit the advantages resulting from the combination of
REST and Linked Data in a programming framework for the
Semantic Web. We have introduced Data-Fu, a declarative
rule-based execution language with a state transition system
as formal grounding, and the challenges we address with this
language, i.e., achieving scalability and performance while
preserving the flexibility and robustness of REST. Further-
more, we described our implementation of an execution en-
gine for the Data-Fu language.

For future work, we plan to extend our approach in the fol-
lowing directions. First, we will add capabilities to improve
handling of failures of resource interactions. Second, we will
extend our formal model of Data-Fu to provide clearly de-
fined semantics in the presence of non-deterministic rules.
Third, we will integrate support for rule-based reasoning into
the execution engine. The rules bring useful expressivity for
aligning different vocabularies and can be easily supported
in the engine by introducing triple-producing rule heads in
addition to the current state transition handlers.

Acknowledgments
This work was partially supported by the PlanetData NoE
(FP7:ICT-2009.3.4, #257641) and by the German Ministry
of Education and Research (BMBF) within the Software-
Campus project framework.

10. REFERENCES
[1] S. Abiteboul, O. Benjelloun, and T. Milo. Positive

Active XML. In Proceedings of the 23rd Symposium on
Principles of Database Systems (PODS’04), pages
35–45. ACM, 2004.

[2] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior
of database production rules: Termination, confluence,
and observable determinism. SIGMOD Record,
21(2):59–68, 1992.

[3] G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In Proceedings of the 1967 Spring Joint
Computer Conference (AFIPS’67), pages 483–485,
Atlantic City, New Jersey, 1967. ACM.

[4] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/PACTs: A programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SoCC’10), pages 119–130,
Indianapolis, Indiana, USA, 2010. ACM.

[5] T. Berners-Lee. Read-Write Linked Data. August
2009. Avaiable at http://www.w3.org/DesignIssues/
ReadWriteLinkedData.html, accessed 26th November
2012.

[6] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder.
S: A scripting language for high-performance RESTful

1234

web services. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’12), 2012.

[7] C. Brenner, A. Fensel, D. Fensel, A. Gagiu,
I. Larizgoitia, B. Leiter, I. Stavrakantonakis, and
A. Thalhammer. How to domesticate the
multi-channel communication monster. Available at
http://oc.sti2.at/sites/default/files/oc_
short_handouts.pdf.

[8] J. Cardoso and A. Sheth. Semantic Web Services,
Processes and Applications. Springer, 2006.

[9] D. Fensel. Triple-space computing: Semantic web
services based on persistent publication of
information. In Proceedings of the IFIP International
Conference on Intelligence in Communication Systems
(INTELLCOMM’04), number 3283 in Lecture Notes
in Computer Science, pages 43–53, Bangkok,
Thailand, 2004. Springer.

[10] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn,
M. Stollberg, D. Roman, and J. Domingue. Enabling
Semantic Web Services: The Web Service Modeling
Ontology. Springer, 2006.

[11] R. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[12] C. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17–37, 1982.

[13] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 7:80–112, 1985.

[14] A. G. Hernández and M. N. M. Garćıa. A formal
definition of RESTful semantic web services. In
Proceedings of the First International Workshop on
RESTful Design (WS-REST’10), pages 39–45, 2010.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on
Computer Systems (EuroSys’07), pages 59–72, Lisbon,
Portugal, 2007. ACM.

[16] J. Kopecky, T. Vitvar, and D. Fensel. MicroWSMO:
Semantic description of RESTful services. Technical
report, WSMO Working Group, 2008.

[17] R. Krummenacher, B. Norton, and A. Marte. Towards
Linked Open Services. In Proceedings of the 3rd Future
Internet Symposium (FIS’10), volume 6369 of Lecture
Notes in Computer Science, Berlin, Germany, 2010.
Springer.

[18] E. A. Lee and P. Varaiya. Structure and Interpretation
of Signals and Systems. Addison-Wesley, 2011.

[19] R. Milner. Communicating and Mobile Systems:
π-calculus. Cambridge University Press, Cambridge,
UK, 1999.

[20] B. Norton and S. Stadtmüller. Scalable discovery of
linked services. In Proceedings of the 4th International
Workshop on REsource Discovery (RED’11), 2011.

[21] C. Pautasso. RESTful web service composition with
BPEL for REST. Journal of Data and Knowledge
Engineering, 68(9):851–866, 2009.

[22] C. Pautasso and E. Wilde. Why is the web loosely
coupled?: A multi-faceted metric for service design. In
Proceedings of the 18th International Conference on
World Wide Web (WWW’09), pages 911–920, Madrid,
Spain, 2009. ACM.

[23] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. ”big”’ web services: making
the right architectural decision. In Proceedings of the
17th International Conference on World Wide Web,
WWW ’08, pages 805–814, New York, NY, USA,
2008. ACM.

[24] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Media, 2007.

[25] E. Simperl, R. Krummenacher, and L. Nixon. A
coordination model for triplespace computing. In
Proceedings of the 9th International Conference on
Coordination Models and Languages
(COORDINATION’07), 2007.

[26] S. Speiser and A. Harth. Integrating Linked Data and
services with Linked Data Services. In Proceedings of
the 8th Extended Semantic Web Conference
(ESWC’11) Part I, volume 6643 of Lecture Notes in
Computer Science, pages 170–184, Heraklion, Crete,
Greece, 2011. Springer.

[27] S. Stadtmüller and A. Harth. Towards data-driven
programming for RESTful Linked Data. In Workshop
on Programming the Semantic Web (ISWC’12), 2012.

[28] R. Studer, S. Grimm, and Abecker, A. (eds.).
Semantic Web Services: Concepts, Technologies, and
Applications. Springer, 2007.

[29] M. Taheriyan, C. A. Knoblock, P. A. Szekely, and
J. L. Ambite. Rapidly integrating services into the
Linked Data cloud. In Proceedings of the 11th
International Semantic Web Conference (ISWC’12),
volume 7649 of Lecture Notes in Computer Science,
pages 559–574. Springer, 2012.

[30] R. Verborgh, T. Steiner, D. V. Deursen, R. V.
de Walle, and J. G. Valls. Efficient runtime service
discovery and consumption with hyperlinked
RESTdesc. In Proceedings of the 7th International
Conference on Next Generation Web Services
Practices (NWeSP’11), Salamanca, Spain, 2011.

[31] T. Vitvar, J. Kopecky, M. Zaremba, and D. Fensel.
WSMO-Lite: Lightweight semantic descriptions for
services on the web. In Proceedings on the 5th
European Conference on Web Services (ECOWS’07),
pages 77–86, 2007.

[32] J. Webber. REST in Practice: Hypermedia and
Systems Architecture. O’Reilly, 2010.

[33] M. Weiss and G. R. Gangadharan. Modeling the
mashup ecosystem: Structure and growth. R&D
Management, 40(1):40–49, 2010.

[34] E. Wilde. REST and RDF granularity, 2009. Available
at http://dret.typepad.com/dretblog/2009/05/
rest-and-rdf-granularity.html.

[35] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In
Proceedings of the 1st International Conference on
Parallel and Distributed Information Systems
(PDIS’91), pages 68–77, Miami Beach, FL, USA,
1991. IEEE Computer Society Press.

1235

[P6] Andreas Harth and Steffen Stadtmüller. Parallel Processing of Rule-

based Programs on Linked Data. 2015. Under review.

Parallel Processing of Rule-based Programs on
Linked Data

Andreas Harth
Institute AIFB, Karlsruhe Institute of Technology (KIT)

Englerstr. 11, 76131 Karlsruhe, Germany
Email: harth@kit.edu

Steffen Stadtmüller
Institute AIFB, Karlsruhe Institute of Technology (KIT)

Englerstr. 11, 76131 Karlsruhe, Germany
Email: steffen.stadtmueller@kit.edu

Abstract—Linked Data provides popular means for decen-
tralised data publishing on the web, with HTTP as access protocol
and RDF as data model. Linked Data enables a new class of
link-traversal algorithms that intertwine the evaluation of query
plans with network requests to fetch data. That is, the dataset
over which queries are carried out is not fixed, but iteratively
expanded during query processing. We join two currently isolated
strands of research to provide query processing capabilities over
web sources: (i) methods for evaluating queries over interlinked
sources via link traversal; and (ii) approaches for integrating
data over interlinked schemas via reasoning. Instead of using
distinct systems for each task, we propose a unified three-stage
architecture, with a data-driven evaluation model for rule-based
programs, to allows for parallel streaming processing of cyclic
(recursive) pipelined query plans in conjunction with network
requests. We design and benchmark various algorithms that
implement the architecture, and show that a streaming approach
outperforms a batching approach. Our execution model allows
users to individually manage distinct thread pools for I/O-bound
and CPU-bound tasks, and thus to balance both types of tasks.

I. INTRODUCTION

The Linked Data principles offer a uniform data represen-
tation format and access mechanism for data on the web [1],
where an estimated 30 billion statements are attainable 1,2. In
large distributed environments such as the web, the integration
of multiple data sources provides value. A minimal set of con-
ventions facilitates integration. In the case of Linked Data, data
format and access protocol are fixed, and mappings between
sources via hyperlinks lead to a very large interconnected data
graph. Data providers use constructs from RDFS and OWL
to help clients interpret and align the schema and data, often
between different sources.

Consequently, an application that uses Linked Data needs
to implement several steps: the data has to be accessed and
downloaded, the data has to be integrated, and the integrated
data has to be queried. To access, integrate and query Linked
Data, one has to use multiple specialised systems in combina-
tion: a crawler for collecting data from distributed resources; a
reasoner to resolve differences in modelling and schema; and
an RDF store [2], [3] to provide query processing capabilities.
The last two steps may be combined using systems such as
OWLim [4], Oracle’s Semantic Data Store [5], RDFox [6] that
provide query answering and reasoning in a combined system.
Still, with these systems, accessing data is a separate step.

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2http://wp.sigmod.org/?p=786

Consequently, applications that require access to frequently
updated sources suffer from suboptimal performance. Alterna-
tively, one has to implement the data processing and retrieval
in imperative programs (as opposed to declarative programs);
those mash-ups are often tailored for a fixed number of data
sources in a narrowly-defined domain.

Example 1: Consider the following query: return publica-
tions authored by programme committee members of a given
conference. Such a query might be interesting for exploring
related work relevant for a scientific community. Data about
PC members may come from the conference website, and data
about publications may come from bibliographic databases
such as DBLP, but also national libraries such as the Library of
Congress. Increasingly, such data is available as Linked Data.
To get an exhaustive set of results, it is not sufficient to go
to a single site. Rather, given the linkage between resources,
we can follow links to other resources describing the person
or publication, align the retrieved data, and evaluate the query
over the combination of data. In case there are updates to
sources, we can re-run the process and return updated results.

We design and study methods to access and integrate
data from distributed but interlinked sources. In our approach,
the different steps required to access and integrate data can
be encoded in a high-level specification based on rules. We
describe the architecture of a system that is able to follow
links for data retrieval, integrate the data via reasoning over
retrieved schemata, and evaluate queries, all in a cohesive
integrated process. The set of data sources (and schema
axioms) is not fixed a priori, but is incrementally expanded
during runtime. We provide a forward-chaining mechanism
for evaluating arbitrary rulesets. Our method is able to use
rulesets that partially encode the semantics of RDFS and OWL,
with restrictions regarding the handling of datatypes and an
infinite amount of axiomatic triples (as in RDFS) [7], [8]. We
evaluate our approach with an end-to-end system implementing
the described architecture.

Our rule formalism amounts to a variant of datalog/pro-
duction rules (the equivalent of RIF Core3, a minimal formal-
ism that encompasses both deduction and production rules).
The basic problems in datalog are computationally hard: fact
entailment is EXPTIME-complete in combined complexity,
and PTIME-complete in data complexity. The latter implies
that the problem of rule evaluation is inherently serial under
standard complexity-theoretic assumptions [7]. Nevertheless

3http://www.w3.org/TR/rif-core/

we achieve significant speedup in practice on the Lehigh
University Benchmark (LUBM).

In particular, we address the following challenges:

• To retrieve all available resource (or a very large subset,
e.g., every resource in a specific domain) is prohibitively
expensive. Applications cannot follow all available links
blindly, but should be designed in a manner to target spec-
ified links. Further, there is little coordination between
providers, and resources have to be aligned and integrated.
However, schema information for data integration has to
be acquired at runtime.

• The retrieval of data can be time consuming, due to
network latency and limited available bandwidth. Data
access can stall the actual processing and query evalu-
ation; thus, data access has to be decoupled from data
processing. In addition, a system capable of handling
sizable amounts of data has to be multi-threaded. Further,
we operate on the web, and as such we focus on data
access using (polling-based) HTTP GET, as opposed to
stream processing systems which rely on an event-based
model for data access [9], [10], [11], [12].

Several link traversal systems exist that evaluate queries
directly over sources accessible as Linked Data [13], [14], [15],
[16]. However, these systems do not take the semantics of data
sources (the mappings of schema and instance elements) into
account during query processing. Other systems implementing
reasoning [17], [6] typically operate over locally accessible
single-source datasets; we assume a hyperlinked environment
where data access and data processing are interleaved. Datas-
pace systems [18] rely on a centralised catalogue of sources; on
the web, we assume hyperlinks between sources for resource
discovery. Stream reasoning systems [19] and complex event
processing systems [20] rely on a fixed number of sources that
push data. On the web, polling is the prevalent communication
mode. Further, in an environment based on resources and
polling, we are able to discover new sources and new data
(including new reasoning constructs) at runtime.

Our contributions are as follows:

• We describe rule-based programs that encode reasoning
features intertwined with link traversal specifications. In
particular, we introduce the notion of request rules, which
infer required network lookups from the processed data.
Request rules complement deduction rules, which infer
and materialise implicit information from the processed
data. We define syntax and semantics for such rule-based
programs (Section III).

• We introduce a generic architecture for the parallel eval-
uation of queries and rules with cyclic operator plans,
and input/output components that are decoupled from
data processing. Our generic architecture can be instanti-
ated with multiple threading models, both using a batch
model which proceeds in rounds, and a streaming model
where each data item is processed immediately. Further
we describe a push-based scheduling execution model
which goes beyond traditional pipelined models [21] or
scheduling models [22]. Thus the model avoids overhead
from inter-process communication and at the same time
caters to scenarios with network requests, where data
from multiple sources has to be processed on arrival.

Specifically, our model separates the workload related to
network access from the workload related to local data
processing. Thus, we can balance available computing
resources between data processing and network lookups
to minimise overall runtime (Section IV).

The techniques described in this paper are also applicable
to distributed query processing and stream reasoning systems.
While we benchmark different threading models on shared
memory architectures, the methods we use come from the
relational database toolbox, and can be implemented in other
shared-nothing architectures such as Apache Hadoop MapRe-
duce (batch model) and Apache Spark Streaming (streaming
model).

We introduce definitions and the problem statement in
Section II, introduce syntax and semantics of rule-based pro-
grams in Section III, give an overview of the system and
explain the architecture in Section IV, describe experiments to
determine the optimal balance for CPU and I/O-bound work
for each threading model in Section V, present related work
in Section VI and conclude with Section VII.

II. PRELIMINARIES

We now define the necessary concepts of RDF and graph
patterns as foundation for rule-based programs. We stay as
close to existing definitions [23], [24] as possible. For a
comprehensive treatment of RDF see [25].

The basis of Linked Data is RDF, which consists of triples:

Definition 1: (RDF Term, RDF Triple, RDF Graph) Let U ,
B, L be pairwise disjoint infinite sets representing respectively
URIs, blank nodes and literals. Let T be the set of all RDF
terms T = U ∪ B ∪L. An RDF triple is defined as 〈s, p, o〉 ∈
(U ∪ B)×U × (U ×B ×L). An RDF Graph is a finite set of
RDF triples G ⊂ (U ∪ B)× U × (U × B × L).

Graph-structured RDF data may come from multiple RDF
files:

Definition 2: (RDF Dataset) An RDF dataset D is a
set {G0, (u1, G1), . . . , (un, Gn)} where G0 . . . Gn are RDF
graphs and u1 . . . un are distinct URIs. The graph G0 is called
default graph, and G1 . . . Gn are called named graphs. For a
set of RDF Graphs Γ,

⋃
G∈ΓG is the merged RDF graph, i.e.,

the union of all triples 〈s, p, o〉 ∈ G, ∀G ∈ Γ while forcing
any shared blank nodes that occur in more than one graph to
be distinct4.

Linked Data mandates that a HTTP GET request on a
resource (identified via an URI) returns an RDF graph:

Definition 3: (Request) We write G = httpget(u) for the
RDF graph returned for an HTTP GET request on the URI
u ∈ U of a resource.

Please note that a server might redirect a request to a URI
u to another URI u′ before an RDF graph is returned, due to
the correspondence between abstract resources and information
resources (see [23] for details).

4For the definition of RDF merge see http://www.w3.org/TR/rdf11-mt/
#shared-blank-nodes-unions-and-merges.

III. RULE-BASED PROGRAMS

We now formally introduce a language to specify rule-
based programs. We define two kinds of rules: request rules,
to support the specification of link traversal, and deduction
rules, to support the integration of heterogeneous data. We
further provide an operational semantics for such rule-based
programs, followed by an example.

A. Syntax

We use Notation3 as syntax for programs. Notation3
extends standard RDF syntax with (universally quantified)
variables and graph quoting to express relationships between
graphs using curly brackets [26]. We first introduce variables,
next graph quoting, and finally some built-in URIs to specify
rules.

To be able to specify queries and rules, we require vari-
ables, and the concept of a basic graph pattern (BGP).

Definition 4: (Triple Pattern, Basic Graph Pattern) Let V
be the infinite set of variables, disjoint with U , B and L. A
triple pattern TP is a triple 〈s, p, o〉 ∈ (V∪U ∪B)×(V∪U)×
(V ∪U ∪B∪L), where subject s, predicate p and object o can
either be a variable or an RDF Term. A basic graph pattern
(BGP) is a set of triple patterns Q = {t1, ..., tn}.

For queries, we support standard SPARQL syntax, but
focus on a subset of SPARQL that supports BGP queries5.
BGPs form the basis of the WHERE clause in SPARQL queries;
we support SELECT and CONSTRUCT result clauses.

A SELECT query includes a list of variables that should
be returned:

SELECT variables
WHERE { BGP }

For CONSTRUCT queries we introduce the notion of graph
template.

Definition 5: (Graph Template) A graph template consists
of a set of triples from (T ∪ V)× (U ∪ V)× (T ∪ V).

A CONSTRUCT query includes a graph template that
specifies how variables from BGP should be used to form
new triples:

CONSTRUCT { graph template }
WHERE { BGP }

We use BGPs also as basis for both deduction and request
rules. To encode rules, we use the Notation3 implication (=>,
short for log:implies).

A deduction rule has the following form:

{ BGP } => { graph template } .

We call the subject of a => triple the body (or antecedent),
and the object of a => triple the head (or consequent) of the
rule. In other word, the body of a deduction rule consists of
BGP , while the head consists of a graph template.

5Additional SPARQL constructs can be layered upon BGP queries.

To be able to specify request rules, we introduce the notion
of request template.

Definition 6: (Request Template) A request template con-
sists of a HTTP method (currently only GET) and a request
target U ∪ V .

As syntax for request templates, we use URIs from the
http and httpm vocabularies. We support the http:mthd
to specify the HTTP method (currently only httpm:GET),
and the http:requestURI property for the request target.
Requests are written as triples, with a blank node on subject
position. Please note that we ignore blank nodes in request
templates for now. In follow-up work, we could define a
semantics that instantiates the blank node with identifiers for
actual requests that are carried out during program evaluation.

The following encodes a HTTP GET request to the URI
dcc:complete6:

[] http:mthd httpm:GET ;
http:requestURI dcc:complete .

Requests with a fixed request target can be specified as
ground RDF triples. Requests with both fixed and variable
request targets can appear as the head of a request rule. A
request rule has the following form:

{ BGP } => { request template } .

We impose syntactic restrictions on rules. Rules have to
be safe, that is, a variable that appears in the rule head also
has to appear in the rule body. Further, we do not allow blank
nodes in graph templates in deduction rules7. We do, however,
allow literals on subject position of graph template triples (so-
called generalised RDF [8]). Those generalised triples are used
during the rule evaluation, and filtered out before serialising
triples into an RDF syntax.

B. Semantics

We now describe the meaning of rules. For a compre-
hensive theoretical study of SPARQL CONSTRUCT queries
including recursion see [27], [28].

In the following, we write terms(S) for the set of RDF
terms in S, where S can be a triple, graph, triple pattern, graph
pattern, graph template or request template, and vars(S) for
the set of variables in S.

Definition 7: (Solution Mapping, Instance Mapping, Solu-
tion Sequence) Let µ be a partial function that maps variables
to RDF terms: µ : V → T . Let dom(µ) ⊂ V denote the
domain of µ, i.e. the subset of V where µ is defined. An RDF
instance mapping is a partially defined function σ : B → T
that maps blank nodes to arbitrary RDF terms.

Let Q be a BGP and G an RDF graph. Further let the
pattern instance mapping Pσµ : vars(Q) ∪ terms(Q)→ T be

6Assuming the prefix dcc set to http://data.semanticweb.org/conference/
dc/2010/.

7We exclude blank nodes from rule heads to guarantee the existence of
a fixpoint.

a function that maps variables and RDF terms in Q to RDF
terms8:

Pσµ (x) =

{
µ(x) if x ∈ V
σ(x) if x ∈ B
x if x ∈ U ∪ L

Let Pσµ (vars(Q) ∪ terms(Q)) denote the RDF graph
resulting from a substitution of all elements e ∈ vars(Q) ∪
terms(Q) in the BGP Q according to Pσµ (e). A mapping
µ for the variables vars(Q) is a solution mapping for Q
from G if Pσµ (vars(Q) ∪ terms(Q)) is a subgraph of G;
i.e., µ satisfies that ∃σ∀〈s, p, o〉 ∈ Q : 〈P (s), P (p), P (o)〉 ∈
G and dom(µ) = vars(Q).

A solution sequence is possibly unordered list of solution
mappings. We write ΩG(Q) for the set9 of all unique solution
sequences for the BGP Q from RDF graph G, i.e.,

ΩG(Q) = {µ| ∃σ : Pσµ (vars(Q) ∪ terms(Q)) ⊆ G}

Solution mappings and sequences are part of the standard
definition of SPARQL semantics.

Definition 8: (Request Rule) An execution step of a re-
quest rule ρr with head H and body B over a graph G adds
the graph Gresp to G, where Gresp is an RDF graph returned
by HTTP requests. The resources for the requests are identified
by the URIs µ(x) ∈ U , to which x is mapped in all solution
sequences of B from G, i.e., µ(x) ∈ ΩG(B)

Therefore the graph Gresp is defined as

Gresp =

{ ⋃
µ∈ΩG(B) httpget(µ(x)) if x ∈ V ∧ µ(x) ∈ U
∅ otherwise

We denote fr as the function that maps a request rule ρr
and a graph G to the graph of retrieved triples resulting from
one execution step of the request rule:

fr(ρr, G) = Gresp

Request rules allow developers to determine in a fine
grained manner what resources to retrieve and which links to
follow. The resources are identified by the solution sequence
for the variable provided in the rule head. For every identified
solution sequence of the rule body from the processed graph,
the provided variable signifies a resource to lookup. If the
mapping for the identified variable of a solution sequence
points to a URI, the URI is the identifier of a resource to
retrieve. In other words, our evaluation procedure determines
URIs from the processed data and thus dynamically follows
and expands links between resources.

Similar to deduction rules, request rules are applied re-
cursively to a graph, where the retrieved triples are added
to the graph after every step. The recursive application is
necessary, because the retrieved data in one step can lead to
the identification of further links to follow.

8We deviate slightly from the SPARQL specification in http://www.w3.
org/TR/sparql11-query/ by explicitly defining pattern instance mappings as
function over RDF terms and variables. However, the semantics remains
unchanged.

9Please note that we assume set semantics for simplicity, in-line with [29],
[30].

Definition 9: (Deduction Rule) An execution step of a
deduction rule ρd with head H and body B over a graph
G adds the graph Gadd to G, where Gadd is the RDF
graph resulting from the substitution of the variables in H
according to all solution sequences of B from graph G, i.e.,
∀µ ∈ ΩG(B)∀〈s, p, o〉 ∈ H : 〈Pσµ (s), Pσµ (p), Pσµ (o)〉 ∈ Gadd
with a unique blank node mapping σ for every µ ∈ ΩG(B).
We denote fd as the function that maps a deduction rule ρd
and a graph G to the graph of derived triples Gadd resulting
from one execution step of the deduction rule:

fd(ρd, G) = Gadd

Deduction rules can be used to encode application-specific
reasoning constructs. Languages such as RDFS or OWL
provide modelling primitives such for expression subclass
relationships between classes or domain/range restriction of
properties. On the Linked Data web, many sources reuse class
and property URIs that are described using RDFS or OWL
constructs. To support certain constructs commonly used for
schema- or instance-level mappings, a general-purpose rule
engine such as the one we describe can make use of these
mappings. Rulesets that encode different entailment regimes
are readily available on the web, e.g., the OWL LD ruleset [31],
which covers OWL constructs that are widely used in practice.

We combine deduction rules and request rules to form
programs:

Definition 10: (Program) A program P = (G,R,Pd,Pr)
is a a tuple with:

• G a finite set of initial triples, i.e., the starting graph;
• R a finite set of request templates with fixed target;
• Pd a finite set of deduction rules; and
• Pr a finite set of request rules.

There has to be at least either one triple in the starting graph
or one initial request specified, that is, G 6= ∅ ∨R 6= ∅.

The execution of a program implies that the initial requests
are carried out and the returned triples are added to the starting
graph G. The rules Pd and Pr are recursively executed over
G until a fixpoint is reached, i.e., no additional triples can
be derived and no additional requests can be carried out. We
denote st as the function mapping to the resulting graph of an
execution step of multiple deduction and request rules over a
graph G:

st(Pd,Pr, G) = G ∪
⋃

ρd∈Pd

fd(ρd, G) ∪
⋃

ρr∈Pr

fr(ρr, G)

The complete execution of a program P is the recursive
evaluation of n execution steps of all rules Pd ∈ P and Pr ∈ P
until a fixpoint is reached:

min(n) : (st1◦...◦stn)(Pd,Pr, G) = (st1◦...◦stn+1)(Pd,Pr, G)

We denote GP as the graph resulting from the execution
of the program P . We denote RP as the set of URIs of all
resources retrieved by a program, which includes resources
from initial requests as well as resources retrieved via request
rules.

BGP queries can be registered to programs. If a BGP query
Q is registered to a program P , the query Q is evaluated over

the result graph GP of program P . We denote ΩP(Q) as the
solution sequence of query Q from program P .

The evaluation of a program continuously extends the
initial graph G. Specifically, both deduction and request rules
monotonically add triples to G and are not capable of removing
triples. Neither deduction rules nor request rules can generate
new RDF terms, i.e., terms that are not present in the initial
graph G, the URIs RP of retrieved resources, or the rules Pd

and Pr. Consequently, given that RP is finite, a program is
guaranteed to have a fixpoint, as the number of combinations of
RDF terms to form valid triples is finite. Therefore, eventually
a program will not be able to infer new triples in another
recursion to add to the result graph, and reach the fixpoint.
Consequently, the result graph will also be a finite set of triples.

However, on the web, resources might be dynamically gen-
erated10, which can cause a program to attempt to iteratively
retrieve a very large or even infinite RP . Thus, the program
cannot reach a fixpoint. There may be other cases where we
do not want to wait for a program to reach its fixpoint (see
Section IV for alternative termination criteria for programs).

C. Example Program Evaluation

In the following we describe in detail the scenario from the
running example. To get a list of publications authored by PC
members of a given conference, say, we can use a program
P with an empty initial graph G = ∅, and an request to a
resource representing the conference we are interested in, i.e.,
dcc:complete for the Dublin Core 2010 conference.

Consider the following program Pex:

(0) Initial request
[] http:mthd httpm:GET ;

http:requestURI dcc:complete .

(1) Request rule to retrieve information about PC members
{ dcc:programme-committee-member swc:heldBy ?pcmember .
} => {
[] http:mthd httpm:GET ; http:requestURI ?pcmember .

} .

(2) Request rule to retrieve information about
publications of PC members.
{ dcc:programme-committee-member swc:heldBy ?pcmember .
?pcmember foaf:made ?publication .

} => {
[] http:mthd httpm:GET ; http:requestURI ?publication .

} .

(3) Deduction rule to specify inverse relationship
between foaf:made and foaf:maker
{ ?x foaf:made ?y . } => { ?y foaf:maker ?x . } .

A system evaluating Pex first retrieves the initial resource
(0), which includes triples for the first triple pattern of the
query (URIs of PC members). Request rule (1) specifies that
all swc:heldBy links to RDF representations of PC members
are followed. Request rule (2) specifies that all foaf:made
links to RDF representations of publications of PC members
are followed. Deduction rule (3) specifies that foaf:made
and foaf:maker are the inverse of each other.

10As example consider the set of resources representing natural numbers
(c.f. http://km.aifb.kit.edu/projects/numbers/) and a program that always re-
trieves the successor for every found number.

Additionally we register the following SPARQL SELECT
query to Pex that returns the names of the PC members and
the titles of the publications they authored:

SELECT ?name ?title
WHERE {
dcc:programme-committee-member swc:heldBy ?pcmember .
?pcmember foaf:name ?name .
?pcmember foaf:made ?publication .
?publication dcterms:title ?title .
}

A user might want to include predefined rulesets (such
as OWL LD [31]) to provide for certain OWL entailments.
With the OWL LD rules, the program evaluation would take
owl:sameAs statements into account, and thus retrieve URIs
to PC members and publications that are connected to the
initial URIs of both via owl:sameAs.

IV. METHODS AND ALGORITHMS

We begin the system description with a problem state-
ment in Section IV-A. Then, we introduce the architecture
in Section IV-B, consisting of three stages (Input, Processing,
Output). Next, we explain the execution model in Section IV-C,
followed by detailed descriptions of each stage. Finally, we
cover termination in Section IV-F.

A. Problem Statement

We assume a set of distributed heterogeneous Linked Data
sources, each identified by a URI d ∈ D. Users want to
evaluate SPARQL BGP queries over the RDF graph GD
resulting from the retrieval of all sources in D, i.e., GD =⋃
d∈D httpget(d). However, only a subset of the URIs of

the resources are known before the evaluation. The remaining
URIs have to be discovered at runtime via link traversal.

We provide the means to specify which links to follow and
how to interpret the meaning of vocabularies in the form of
rule-based programs. Therefore the input for the considered
problem consists of a program P and a set of SPARQL BGP
queries Q that are to be evaluated over the retrieved data.
Please note that the user specifies both P and Q.

The program evaluation includes query and rule processing
in tandem with data access. The output are the results of the
queries executed over the retrieved data.

The optimisation goals are to increase throughput (i.e.,
process as many triples and sources as quickly as possible)
and decrease latency (i.e., return results as quickly as possible)
in the face of the combination of data access and processing.
The point about latency is related to “anytime” behaviour, a
trade-off between processing time and query results. We study
an “online query processing” algorithm where results improve
gradually with increased processing time [32]. Such a setup is
also relevant for stream reasoning systems [33].

Query and rule processing tasks can be considered CPU-
bound, i.e., the core on which the tasks are executed are almost
completely utilised and the computing power of the core
determine throughput. Data access tasks can be considered I/O-
bound, i.e., only a fraction of the core on which the tasks are
executed is utilised, as network latency and bandwidth deter-
mine throughput. Consequently we have to execute programs

Triple

Triple

...

Request

Request

...

Input: Initial
Triples

Input: Initial
Requests

Triple

Triple

...

Solution

Solution

...

Physical
Operator Plan

Disk/Network
Write

Disk/Network
Read

Fig. 1. Illustration of the data flow between the three stages: Input,
Processing, Output. We use queues to transfer items between the stages. The
BaseTripleQueue takes as input initial triples, and the InputQueue initial re-
quests. The Disk/Network Read component reads RDF from disk and network,
puts the resulting triples into the BaseTripleQueue, and receives new requests
from the Physical Operator Plan. The Physical Operator Plan operates on triples
from the BaseTripleQueue and DerivedTripleQueue, and generates solutions that
are passed via the SolutionQueue to the Disk/Network Write component. The
Physical Operator Plan also generates new triples, which are fed back to itself
via the DerivedTripleQueue.

in a way to accommodate for the heterogeneous workloads of
data processing and access.

B. Architecture

In this section we describe an architecture for a system
that evaluates programs. We propose a system architecture that
consists of three stages: Input, Processing and Output, similar
to SEDA (staged event-driven architecture) [34]. The Input
and Output stages are responsible for reading and writing data,
respectively (Section IV-D). The Processing stage consists of
a physical operator plan for identifying result bindings for the
BGPs in rule bodies and queries, and for generating triples and
requests from templates (Section IV-E). Figure 1 illustrates the
dataflow between stages.

The physical operator plan is derived from Pd, Pr and Q
in three steps known from relational database implementation:

1) Parse the program P and the queries Q, and build an
internal representation of Pd, Pr and Q. Remember initial
triples G and initial requests R.

2) Create the logical operator plan from the internal repre-
sentation of Pd, Pr and Q. Please note that the logical
operator plan contains cycles to encode the recursive
nature of Pd.

3) Create the physical operator plan encoded with the equiv-
alent of unnamed relational algebra expressions.

The actual evaluation starts with G and R as input to the
physical operator plan. We use queues for the passing of work
items between the stages:

• InputQueue: for requests to be performed by the Disk/Net-
work Read component, filled by the Physical Operator Plan.

• BaseTripleQueue: for triples from requests to be processed
by the Physical Operator Plan, filled by the Disk/Network Read
component.

• SolutionQueue: for solutions to queries to be handled by
the Disk/Network Write component.

Please note that data flows between Disk/Network Read and
Physical Operator Plan in both directions: both stages mutually
influence each other. The queues allow for balancing the
CPU-bound and the I/O-bound tasks: with the appropriate
queue configuration, the Physical Operator Plan is able to exert
back-pressure to the Disk/Network Read component. That is, the
architecture caters for flow control between stages.

We further use a queue within the Physical Operator Plan to
break the cycle due to recursion:

• DerivedTripleQueue: for triples from derivations generated
by the Physical Operator Plan.and to be processed by the
Physical Operator Plan again.

We need the DerivedTripleQueue to avoid arbitrary deep call
stacks, which would occur with a direct feedback loop within
the Physical Operator Plan due to the recursion. Please note that
we eliminate duplicates at the DerivedTripleQueue to be able to
reach the fixpoint.

To sum up: output to queries are routed to the Disk/Network
Write component via the SolutionQueue. Output from derivation
rules are connected to the DerivedTripleQueue. Output from
request rules are routed to the Disk/Network Read component
via the InputQueue.

The different stages work independently of each other,
emitting data or processing streams while performing I/O-
bound or CPU-bound tasks along the way. The stages operate
until the system determines that the program evaluation is
finished. Criteria for termination can include:

• a specified timeout has been reached;
• the system has requested a pre-defined number of sources;
• the system has reached a pre-defined depth in traversing

the graph of sources, starting from the initial sources; or
• the computation has reached a fixpoint, i.e., the result

graph GP is completely calculated according to the
rules of the program and all query solutions have been
completely generated and written.

In the remainder of the paper we consider reaching the
fixpoint as termination condition. However, additional termina-
tion conditions can be used to prevent a program from running
indefinitely, e.g. if the program cannot reach a fixpoint due to
an infinite amount of resources provided by a “spider trap”. In
these cases, the anytime behaviour of the system helps, as the
system outputs results as soon as they are generated.

Our proposed architecture satisfies the following character-
istics:

• The processing has to happen in parallel to benefit from
multiple cores. An important requirement is the ability to
balance I/O-bound and CPU-bound work.

• The system generates a stream from the resources that
are polled, and processes the arriving data in a streaming
fashion. The query processing works in streaming fashion
to be able to return results incrementally.

• Data processing and I/O can be interleaved to reduce
overall elapsed time relative to stepwise evaluation. In-
terleaving work requires incremental processing, because
new requests are derived from the processed data, and new

requests have to be done as soon as possible to account
for latency in network sources.

• The processing of rules and queries has to be optimised
to avoid unnecessary work. We describe a set of standard
database query optimisation techniques that can be used
in the architecture in Section V.

We assume three distinct thread pools, one for each stage:

• InputWorker: take requests from the InputQueue, carry out
requests, and parse data into the BaseTripleQueue.

• ProcessingWorker: take triples from the BaseTripleQueue and
DerivedTripleQueue, evaluate queries and rules, and put
results into either the InputQueue, DerivedTripleQueue, or
SolutionQueue.

• SinkWorker: take solution sequences from the SolutionQueue
and write them to disk or network.

In the following, we first describe how to workers operate
on data. We then cover the Input and Output stages, followed
by the Processing stage. Finally, we present methods for detect-
ing termination in different configurations of the architecture
with regards to multi-threading.

C. Push-Based Scheduling Execution Model

In the following we detail our push-based scheduling
execution model for the parallel evaluation of linked programs.
For parallel evaluation of programs, we do not use an in-
dividual thread for every operator in the physical operator
plan as proposed in [16], [21]. Instead we allow operators to
schedule each other within a single thread, i.e., every operator
iterates over its intermediate results and pushes the results to
subsequent operators in the plan with a process call. Therefore
we avoid the overhead of inter-process communication [22],
which would result from passing intermediate results between
threads.

Traditional iterator execution models [22], [13] are
demand-driven, i.e., operators request data items for processing
from preceding operators. In contrast we propose a data-
driven push-based scheduling of operators, where the operators
immediately push intermediate results to subsequent operators.
Such a push-based execution model especially caters to data
processing scenarios that include network lookups, as data can
be processed immediately when it arrives, rather than waiting
on operators during slow network request.

Every ProcessingWorker thread evaluates a sequence of
scheduled operators and the number of employed Processing-
Worker threads determines the number of in parallel evaluated
operator sequences. Consequently, the ProcessingWorker operate
on the shared physical operator plan. The set of InputWorker
perform the derived network lookups and feed retrieved data
back to the operator plan via the BaseTripleQueue.

ProcessingWorker threads are CPU-bound, i.e., in general a
running ProcessingWorker thread utilises almost completely the
core on which the thread is executed. Therefore the number
of ProcessingWorker is driven by the number of available cores:
fewer threads than available cores would not fully utilise the
capacity of the system and more threads can not generate
a benefit, as the existing threads are already able to fully
utilise the system. In fact, early experiments with a 1:1 relation

between operators and threads showed an excessive amount of
operating system context switches.

InputWorker threads are I/O-bound, i.e., a running InputWorker
thread utilises only a fraction of the core on which the thread
is executed, as requests are constrained by network bandwidth
and latency. The number of InputWorker threads can therefore
exceed the number of available cores until the overhead of
coordinating the threads outweighs the benefit of using parallel
requests.

SinkWorker threads are also I/O-bound, as serialising results
is inexpensive. For simplicity, we assume one SinkWorker per
registered query.

D. Disk/Network Read and Write

The goal of the Disk/Network Read component is to carry out
requests as specified in request rules, and parse the responses;
requests are incrementally generated by the physical operator
plan out of identified result bindings for request rules. Thus,
the component actually performs the link traversal, as it carries
out requests on resources whose URIs are extracted from
processed graphs. Although we have implemented also support
for file URIs, we assume in the following only http URIs.

The goal of the Disk/Network Write component is to serialise
query results, and write the results to disk or network. There
are as many SinkWorker threads as there are queries. There is
one queue for each SinkWorker. As the implementation of the
Disk/Network Write component is straightforward, we focus in
the following on the Disk/Network Read component.

Intuitively, the Disk/Network Read component operates simi-
lar to a web crawler: the component performs requests in par-
allel while spacing out requests to avoid overloading sources,
and ensures that each request is only done once.

The Disk/Network Read component has to satisfy the follow-
ing requirements:

• Retrieve data as fast as possible, to not become the
bottleneck in processing.
• Do not repeat requests.
• Carry out requests in a polite fashion, i.e., do not overload

servers with parallel requests11

Input to the Disk/Network Read component via the InputQueue
are URIs of resources to retrieve µ(x), which are derived from
the result bindings for a request rule body:

µ(x) ∈ U with µ ∈ ΩG(B) for ρr : {B} =⇒ {x}

The requests on the resources in the InputQueue are carried out
in parallel by the InputWorker threads. Output of the Disk/Network
Read component are the RDF graphs returned from retrieving
the resources, httpget(µ(x)). The triples of the returned RDF
graphs t ∈ httpget(µ(x)) ⊆ Gresp are fed into the BaseTriple-
Queue so that the triples can be further processed. Thus, the
request rules also establish cycles, which reflects the recursive
application of the request rules.

11It used to be customary to wait several seconds between requests to the
same server. Within our architecture we can ensure delays with a modified
InputQueue.

TABLE I. OPERATORS USED IN THE LOGICAL AND PHYSICAL PLANS
TO PROCESS DATA.

Operator Description
Input Distinguished node for input of triples
TriplePattern Evaluate triple patterns
EquiJoin Compute equi-join between two inputs
Binding Store intermediate results for EquiJoins
Project Project tuples for SELECT queries
Construct Generate new triples for CONSTRUCT queries
Consume Output query results
Derivation Generate derived triples
Request Generate requests

If multiple solutions of a request rule body map the variable
in the rule head to the same URI, the same request is derived
multiple times.

∃µ1, µ2 ∈ ΩG(B) : µ1(x) = µ2(x) for ρr : {B} =⇒ {x}

As duplicate requests to the same resource cause unnecessary
source server load and network traffic, the Disk/Network Read
component has to ensure to issue only unique requests. Thus,
the Disk/Network Read component can maintain a set of all URIs
that were already used for requests in a visited set. Multiple
requests on the same URI are then rejected. Multiple requests
on the same URI might also occur if a previously unknown
URI is requested that simply redirects to an already seen
URI. Consequently the system also needs to store information
about redirects, i.e., which URIs redirected to the information
resource that eventually delivered data. When performing a
large number of requests across many web servers, there are
many more things to consider, such as politeness and dead host
detection, which we omit due to space constraints.

E. Physical Operator Plan

The physical operator plan is a network of operators (see
Table I for a list of operators). The BGPs of rule bodies and
queries are converted into expressions involving TriplePattern,
Binding and EquiJoin.

The network calculates the result bindings of the rule
bodies and queries from data items sent through the operator
plan.

• Results ΩG(B) for the body B of a deduction rule ρd are
used to generate derivations via Derivation.

• Results ΩG(B) for the body B of a request rule ρr are
used to generate requests via Request.

• Results ΩG(Q) of a query Q are the final output, sent
to Consume via Project for SELECT and Construct for
CONSTRUCT queries.

The operators are connected via sender/receiver relation-
ships. The workers propagate solution sequences through the
physical operator plan along the sender/receiver relationships.
The solution sequences do not carry full variable/term pairs,
but are represented as tuples of RDF terms, i.e., unnamed
relational algebra expressions. The position of an RDF term
in the tuple determines which variable maps to the term.

Individual triple patterns of BGPs of queries and rule
bodies are represented with TriplePattern operators. BGPs with
multiple triple patterns lead to multiple TriplePattern operators,
connected via EquiJoin operators, which represent join con-
ditions. Thus, each BGP is represented as a tree and the

Input

TriplePattern
? foaf:made ?

TriplePattern
? dc:title ?

TriplePattern
? foaf:name ?

TriplePattern
dc2010:programme-committee-member swc:heldBy ?

Derivation
? foaf:maker ? [1, 0]

Binding
[0]

Binding
[0]

Binding
[0]

Request
[0]

Binding
[0]

EquiJoin

EquiJoin

EquiJoin

EquiJoin

Binding
[2]

Binding
[0]

Request
[1]

ProjectionEvaluator
[1, 3]

Consume

Fig. 2. Physical operator plan for rules and query of the example, after
common subexpression elimination. Grey boxes indicate connections to the
queues: the Input operator is polling from the BaseTripleQueue, the Derivation
operator adds derived triples to the DerivedTripleQueue, and the Request
operators add new requests to the InputQueue. Finally, the Consume operator
places query solutions into the SolutionQueue for serialisation and output.

combination of all BGPs in the program and queries form
a forest of join trees. However, different trees of the join tree
forest can share operators to eliminate common subexpressions
and thus duplication of work and space. Thus the forest forms
a connected graph, rather then a set of independent join trees.

The Input operator is the distinguished node in the op-
erator plan, the place where to input data, which connects
to all TriplePattern operators. The trees receive tuples via the
TriplePattern operators, which in turn receive triples from the
Input operator. Depending on whether the BGP is from a query,
a deduction rule or a request rule, the top operator of the BGP
tree is connected to an Output operator (via Project operators),
to a Derivation operator, or to a Request operator.

Instead of a directed acyclic graph of operators, which is
the basis for most dataflow-systems, our operator graph may
contain cycles. The possible cycles established by connections
from the Derivation operators to the Input operator, i.e, the cycles
reflect the recursive application of deduction rules. That is,
the Derivation operators send the generated triples t ∈ Gadd
back to the Input operator for processing. We break cycles in
the physical operator plan with the DerivedTripleQueue between
Derivation operators and Input operator.

Derived requests are sent to the InputQueue, which feeds
the network request component. Thus, the physical operator
plan and request component are decoupled, which allows to
take into account the different processing speeds of different
worker threads, i.e., balance I/O-bound and CPU-bound tasks.

We have implemented and evaluated the following optimi-
sations:

• Reordering heuristics based on number of variables in
triple patterns.

• Common subexpression elimination to avoid duplication
of work and waste of space. To be able to collapse
a join tree, we store the hash tables of the symmetric
hash join in separate operators (Binding operators), so that
multiple EquiJoin operators can access the same hash table
containing intermediate results12.

Figure 2 illustrates the physical operator plan for deduction
rules, request rules and query of the example. Please note
that the figure shows the plan after common subexpression
elimination: several Binding operators have multiple receiving
EquiJoin operators.

F. Termination

Termination is a challenging topic in our architecture,
given the cyclic dataflow plans. To determine when a program
has been completely evaluated (i.e., all implied lookups are
completed and all inferences from the rules are drawn) we
have to identify the fixpoint of the program evaluation. The
fixpoint has been reached when two conditions are met:

• All queues are empty, i.e., there are no further triples or
requests to process.

• All worker threads are idle or sleeping, i.e., the worker
threads are not processing triples or requests.

In a multi-threaded architecture, detecting that these con-
ditions hold can be easy or quite involved, depending on how
the parallelism is instantiated. In the following, we describe
different instantiations and ways to check for termination in
each.

Serial: With the serial threading model, there is only one
thread, taking the roles of InputWorker, ProcessingWorker and
SinkWorker. There is no parallel processing, and all operations
are carried out sequentially in the main thread. The main thread
takes one item from the queue, processes the item, and pushes
the results to the queue. First, all items in the DerivedTripleQueue
are processed, followed by items from the BaseTripleQueue,
then items from the InputQueue, and finally items from the
SolutionQueuel When the thread fails to poll a new item from
any of the queues (that is, all queues are empty), the fixpoint
has been reached. We use the single-threaded serial model as
baseline.

Batching: A straightforward approach to a multi-threaded
model is to process a program in rounds [35]: in round n,
derived triples and requests are stored into new queues for the
next round n+1. Once the queues in round n are empty, round
n+1 starts. The fixpoint is reached once the queues are empty
at the beginning of a new round. The batching model does not
fully leverage the available system resources towards the end
of each round: as a queue contains fewer items than there are
threads, only some of the threads are processing the last items
while the other threads are sleeping, even though the queues
for round n+ 1 might already contain items.

Streaming: With the streaming threading model, derived
triples and requests are directly pushed into the queues. If a
worker is idle but finds its queue to be empty, the worker sleeps

12In Rete production system terminology, the Binding operators after
TriplePattern could be called α-memory, and the Binding operators after
EquiJoin operators β-memory.

and periodically wakes to try to acquire an item from the queue
again (busy waiting13). The wait time can be freely chosen and
results in a trade off: A short waiting time can cause system
overhead as workers wake up to often unnecessarily; a long
waiting time can cause the workers to stay unnecessarily asleep
while items in the queue are present. To identify the fixpoint
the main thread of control checks periodically whether i) the
queues are empty and ii) all workers are in sleeping state.

V. EXPERIMENTS

We now describe our experiments as part of a systematic
evaluation. We analyse the behaviour of a fully implemented
system for the parallel evaluation of rule-based programs.
In particular, we experiment with different threading models
and analyse the system in terms of throughput with different
degrees of parallelism, i.e., a different number of worker
threads and cores.

A. LUBM-LD Benchmark

The widely-used Lehigh University Benchmark
(LUBM) [36] provides queries over a synthetically generated
dataset from the university domain. Our experiments are based
on LUBM, adapted to adhere to the Linked Data principles.

The LUBM dataset generator creates separate files
containing instances of univ-bench:University
and univ-bench:Department. In addi-
tion, the generated files include links from
univ-bench:University instances to associated
instances of univ-bench:Department. However, there
is no correspondence between the identifiers of entities (e.g.,
http://www.Department7.University19.edu/)
and files (e.g., University19_7.owl).

We adapted LUBM so that URIs for
the classes univ-bench:University and
univ-bench:Department correspond to the URIs
of the files that contain the RDF describing each. In addition,
we added an index file that contains references to instances
of univ-bench:University, to be able to use link
traversal for data access. We also changed the serialisation
syntax to Turtle, as XML does not allow for relative URIs
in namespaces14. Using URI references (relative URIs) is
important, so that the directory with data can be moved to
different locations while ensuring link consistency.

We use LUBM-LD 100 for all our experiments. LUBM-LD
100 consists of 2.108 files (plus one file with the vocabulary),
leading to a total size of 807 MB in Turtle syntax15 with
13.892.172 triples. We host the LUBM-LD files on a local
server which is configured with a network delay of 50 ms, to
provide network delays similar to the ones on the web. We do
not cap the bandwidth, and we do not assume access restriction
to the server. In other words, we evaluate the system with fully
parallel access16.

13In our experiments, a blocking implementation based on barriers turned
out to be slower than the busy waiting implementation.

14http://www.w3.org/2000/09/xppa
15The amount of transferred data via HTTP is slightly higher than the file

size due to additional header data.
16The system can adhere to basic politeness criteria based on a different

implementation of the InputQueue that avoids parallel requests to the same
host and optionally limits the access rate.

B. Setup

We run experiments with a machine with two Intel Xeon
E5-2670 2.60GHz processors (8 physical cores per processor;
hyper-threading results in 32 logical cores) and 256 GB
of main memory. The prototype system implementing the
architecture is written in Java, and the experiments are run on
OpenJDK 1.7u7917. We use lighthttpd on a separate machine to
serve the LUBM files. In our test the load of the web server
machine never exceeded 0.05. Both machines are connected
via 1Gbit/s Ethernet and run Debian GNU/Linux Wheezy
64bit.

C. Workload

For the experiments we use the following program
that specifies an initial request to the index file, and
then iteratively performs requests on instance URIs
of instances of univ-bench:University and
univ-bench:Department. We include the OWL
LD ruleset [31].

Initial request: get index file
[] http:mthd httpm:GET ;

http:requestURI <./Universities.ttl> .

Request rule to retrieve information about University
{ ?x a ub:University . }
=>
{ [] http:mthd httpm:GET ;

http:requestURI ?x . } .

Request rule to retrieve information about Department
{ ?x a ub:Department . }
=>
{ [] http:mthd httpm:GET ;

http:requestURI ?x . } .

Request rule to retrieve file with T-Box
{ ?x owl:imports ?y . }
=>
{ [] http:mthd httpm:GET ;

http:requestURI ?y . } .

In addition to the program, we register the 14 LUBM
queries; query results are serialised to disk in TSV format.

D. Baselines

Given our novel scenario, there is no system available
to match our functionality. We however give baseline perfor-
mance results which help to put our results in context. Please
be aware, however, that the baseline measurements of related
systems are not directly comparable, as none of the systems
allows for link traversal. The baseline systems assume that all
links are available at the beginning, which is not the case in the
link traversal scenario, where loading data and processing data
mutually influence each other. The baseline systems concern
the Input and Processing/Output stages.

As baseline for Input, we use the rapper utility from
Dave Beckett’s Redland RDF libraries18. Downloading and
parsing the LUBM-LD 100 files using GNU parallel with

17We use the default Garbage Collector settings with -Xmx200G
-Xms200G.

18http://librdf.org/

32 parallel jobs takes 111.08s. As baseline for Processing/Out-
put, we use Ontotext’s GraphDB Lite (formerly OWLIM), ver-
sion 6.1.8410. We run LUBM 100 with the standard configura-
tion of the supplied benchmark script, but enabled larger Java
heap size (-Xmx200G). Loading, materialisation and query
processing takes 306.01s. Thus, accessing data, processing data
and outputting results takes 417.09s (111.08s+306.01s).

E. Results and Analysis

We now report results for the serial, batching and stream-
ing threading models. We implemented the streaming model
both as a blocking model based on barriers (which is the
standard in the textbooks and libraries) and using busy spin-
ning. Surprisingly, the busy spinning model outperforms the
blocking model based on barriers. We thus include only results
for the busy spinning model in the remainder under streaming.

We first report results for serial: 2929.17s without any
optimisations, 2935.12s for just reordering, 1162.68s with both
reordering and common subexpression elimination.

Figure 3 shows the results for different thread configura-
tions for the batching and streaming variants19. Streaming is
almost twice as fast as batching. The optimal configuration
for batching is 32 InputWorker threads and 32 ProcessingWorker
threads, for streaming the optimum is 64 InputWorker threads
and 24 ProcessingWorker threads. The insight that too many
processing threads are detrimental to performance rules out
approaches that use a 1:1 mapping between operators and
threads, given that our rule programs often yield operator plans
with many more operators than cores.

We also determine the effect of reordering and common
subexpression elimination for these optimal configurations.
For batching without optimisations 2061.17s, 2019.00s with
reordering and 236.49s with both reordering and common
subexpression elimination. For streaming without optimisa-
tions 1270.09s, 1326.04s with reordering and 142.88s with
both reordering and common subexpression elimination.

The fact that reordering sometimes is even worse than just
using the order as written in the BGPs of the rules and queries
indicates that the explicitly stated BGP order in OWL LD rules
and LUBM queries is efficient.

In summary we can say that the presented architecture
combining I/O-bound and CPU-bound work outperforms sys-
tems where both stages are considered separately. Streaming
outperforms batching, and common subexpression elimination
turns out to have a significant effect on overall performance,
given that there is a large overlap of patterns in rules in the
OWL-LD ruleset.

VI. RELATED WORK

There are many approaches for link-traversal query pro-
cessing, first described in [13]. Ladwig et al. [16] propose
a push-based model for query processing over Linked Data
similar to ours. However, they implement their system using
the Scala actor model, with a queue and a lightweight thread
for each operator, and do not consider rules. Umbrich et al. [24]

19We carried out experiments with half the reported step size, but only
show partial results due to space constraints.

 8

 16

 24

 32

 40

 48

 16 32 48 64 80 96

#
 o

f
P
ro

ce
ss

in
g
W

o
rk

e
r

th
re

a
d
s

of InputWorker threads

320.82s 317.77s 321.49s 324.96s 322.72s 325.93s

272.88s 278.90s 259.79s 267.14s 263.61s 269.79s

246.53s 241.29s 248.89s 253.09s 252.12s 243.36s

254.70s 236.49s 240.90s 241.83s 242.16s 238.87s

249.39s 264.08s 267.20s 255.87s 263.04s 255.26s

249.83s 259.19s 258.10s 242.34s 260.36s 257.10s

 160

 180

 200

 220

 240

 260

 280

 300

 320

ti
m

e
 (

se
co

n
d
s)

 8

 16

 24

 32

 40

 48

 16 32 48 64 80 96

#
 o

f
P
ro

ce
ss

in
g
W

o
rk

e
r

th
re

a
d
s

of InputWorker threads

217.19s 215.76s 215.21s 219.79s 216.10s 216.40s

159.14s 154.08s 155.81s 157.54s 154.45s 152.28s

147.90s 151.14s 148.70s 142.88s 143.58s 146.56s

179.46s 171.10s 163.84s 166.60s 162.45s 160.85s

180.49s 176.13s 174.19s 174.12s 175.01s 172.80s

173.40s 176.07s 173.19s 176.72s 174.61s 173.40s

 160

 180

 200

 220

 240

 260

 280

 300

 320

ti
m

e
 (

se
co

n
d
s)

Fig. 3. Elapsed time (lower is better) for data access, processing (reasoning and query evaluation), and output of query results for LUBM-LD 100. The left
graph shows results for the batching model, and the right graph shows results for the streaming model.

study the impact on the recall of query results when taking into
account reasoning constructs. In contrast, we describe methods
to carry out rule-based reasoning in combination with HTTP
requests. In contrast to [15] who specify path expressions
on queries, we only allow for processing of BGP queries.
However, we can specify link expansion in a more fine-grained
manner using request rules.

Stadtmueller et al. [37] propose a system similar to ours
that also takes into account data manipulation (CRUD) op-
erations. In contrast, we focus on read operations and on
the parallel execution, specify a concrete syntax for request
rules, describe several optimisations, and conduct an extensive
performance evaluation.

Grosof et al. [38] note that rules can be rewritten in the
face of T-Box statements, yielding more efficient rule sets. The
drawback for using the T-Box to optimise rule processing is
that the T-Box needs to be known (and fixed) before evaluating
the query plan. Given that we aim for a general-purpose link-
following, in which the system might access hitherto unknown
T-Box statement during query evaluation, the optimisation does
not apply in our scenario.

Many approaches rely on an a priori fixed T-Box. A strand
of work in rule-based reasoning revolves around the idea
of separating T-Box (triples with rdf:type property and
those with RDF, RDFS and OWL vocabularies) and A-Box.
Hogan et al. [39] were the first to use the fact that many
rulesets consist of joins between T-Box statements and A-
Box statements. Their system holds T-Box in memory, and
does scans over A-Box triples to perform the join. Similarly,
[40] uses specialised algorithms tailored to a particular ruleset.
In contrast, we provide a general rule processor for positive
Datalog on triples, that allows e.g., for arbitrary join operations
over instance data. Motik et al. [6] also propose a parallel
system for general recursive Datalog rules, where multiple
processes extract facts from a database and evaluate the fact
over sub-queries obtained from the rules. The result of the
evaluation is written back to the database and consequently

available for the evaluation of other sub-queries. The approach
of Motik et la. relies on the availability of a storage scheme
that allows for efficient evaluation of the sub-queries (i.e.,
indexes over the the facts in the database) and efficient update
mechanisms. In our approach, the data is fetched from the
network, and triples are directly pushed through the operators
which maintain multimaps for joins.

We use a variant of the the symmetric hash join operator
as proposed by Wilschut and Apers [21]. To enable parallel
processing Wilschut describes a pipeline execution model,
where every operator is executed by a process. In our pipeline
model data is “pushed” from one operator to another by inter-
process communication (i.e., pipes). Further, in our version,
the hash tables are external to the join operation (the Binding
operator), to allow for reusing hashtables with bindings across
joins. Graefe [22] argues that the overhead introduced by
the interprocess communication can be avoided by employing
an execution model that allows operators to schedule each
other within a single process. In Graefe’s model operators can
request new data items from other operators whenever new
data items are required. The operators iterate over the received
(pull) data items to produce new (intermediate) results, and
thus eliminate the need to buffer data in pipelines. However,
the author points out that in a scenario where data-sources
have to unload data as it arrives, a more data-driven push-based
model might be more appropriate. We use such a push-based
model.

VII. CONCLUSION

We have presented methods for query processing over
interlinked data sources based on declarative programs speci-
fied using rules. The specifications include request rules, to
take into account the links between sources to be able to
discover new resources in a decentralised environment, and
deduction rules, to specify the semantics of data items as
defined in knowledge representation languages such as RDFS
and fragments of OWL.

We have described and evaluated several threading models
for parallel evaluation of rules and queries in a streaming
fashion based on a data-driven push-based execution model.
We believe that the presented formalism and approach will
make it easier for users and applications to consume the wealth
of structured data available as Linked Data on the web.

REFERENCES

[1] T. Berners-Lee, “Linked Data,” Cambridge, Massachusetts, USA, 2006.
[2] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple indexing

for semantic web data management,” Proc. VLDB Endow., vol. 1, no. 1,
pp. 1008–1019, Aug. 2008.

[3] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold,
“Column-store support for rdf data management: Not all swans are
white,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1553–1563, Aug. 2008.

[4] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and
R. Velkov, “Owlim: A family of scalable semantic repositories,” Se-
mantic Web Journal, vol. 2, no. 1, pp. 33–42, Jan. 2011.

[5] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and
J. Srinivasan, “Implementing an inference engine for rdfs/owl constructs
and user-defined rules in oracle,” in Proc. of the 24th International
Conference on Data Engineering, 2008, pp. 1239–1248.

[6] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu, “Parallel
materialisation of datalog programs in centralised, main-memory RDF
systems,” in Proc. of the 28th AAAI Conference on Artificial Intelli-
gence, 2014, pp. 129–137.

[7] P. F. Patel-Schneider, “Reasoning in RDFS is inherently serial, at least
in the worst case,” in Proc. of the ISWC 2012 Posters & Demonstrations
Track, Boston, USA, November 11-15, 2012, 2012.

[8] H. J. ter Horst, “Completeness, decidability and complexity of en-
tailment for rdf schema and a semantic extension involving the owl
vocabulary,” Web Semant., vol. 3, no. 2-3, pp. 79–115, Oct. 2005.

[9] S. D. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output
rate of multi-way join queries over streaming information sources,” in
Proc. of the 29th International Conference on Very Large Data Bases
- Volume 29. VLDB Endowment, 2003, pp. 285–296.

[10] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker, “Operator scheduling in a data stream manager,” in
Proc. of the 29th International Conference on Very Large Data Bases,
2003, pp. 838–849.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah, “Telegraphcq: Continuous dataflow processing,” in Proc.
of the 22nd International Conference on Management of Data, 2003,
pp. 668–668.

[12] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cher-
niack, C. Convey, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul,
R. Tibbetts, and S. Zdonik, “Retrospective on aurora,” The VLDB
Journal, vol. 13, no. 4, pp. 370–383, Dec. 2004.

[13] O. Hartig, C. Bizer, and J.-C. Freytag, “Executing SPARQL queries
over the web of linked data,” in Proc. of the 8th International Semantic
Web Conference, 2009.

[14] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and
J. Umbrich, “Data summaries for on-demand queries over linked data,”
in Proc. of the 19th International Conference on WWW. ACM, 2010,
pp. 411–420.

[15] V. Fionda, C. Gutierrez, and G. Pirró, “Semantic navigation on the web
of data: Specification of routes, web fragments and actions,” in Proc.
of the 21st International Conference on WWW, 2012, pp. 281–290.

[16] G. Ladwig and T. Tran, “Linked data query processing strategies,” in
Proc. of the 9th International Semantic Web Conference, 2010, pp. 453–
469.

[17] M. Sintek and S. Decker, “TRIPLE - A query, inference, and transfor-
mation language for the semantic web,” in Proc. of 1st International
Semantic Web Conference, 2002, pp. 364–378.

[18] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces:
a new abstraction for information management,” SIGMOD Record,
vol. 34, pp. 27–33, Dec 2005.

[19] A. Margara, J. Urbani, F. van Harmelen, and H. Bal, “Streaming the
web: Reasoning over dynamic data,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 25, no. 0, 2014.

[20] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning
and complex event processing in ETALIS,” Semantic Web, vol. 3, no. 4,
pp. 397–407, 2012.

[21] A. N. Wilschut and P. M. G. Apers, “Dataflow query execution in a
parallel main-memory environment,” in Proc. of the 1st International
Conference on Parallel and Distributed Information Systems, 1991, pp.
68–77.

[22] G. Graefe, “Query evaluation techniques for large databases,” ACM
Computing Surveys, vol. 25, no. 2, pp. 73–169, Jun. 1993.

[23] A. Harth and S. Speiser, “On Completeness Classes for Query Eval-
uation on Linked Data,” in Proc. of the 26th National Conference on
Artificial Intelligence, 2012.

[24] J. Umbrich, A. Hogan, A. Polleres, and S. Decker, “Improving the recall
of live linked data querying through reasoning,” in Proc. of the 6th
International Conference on Web Reasoning and Rule Systems, 2012,
pp. 188–204.

[25] C. Gutierrez, C. Hurtado, and A. O. Mendelzon, “Foundations of
semantic web databases,” in Proc. of the 23rd Symposium on Principles
of Database Systems, 2004, pp. 95–106.

[26] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable RDF
syntax,” W3C, W3C Team Submission, Mar. 2011.

[27] E. V. Kostylev, J. L. Reutter, and M. Ugarte, “CONSTRUCT Queries in
SPARQL,” in Proc. of the 18th International Conference on Database
Theory, vol. 31, 2015, pp. 212–229.

[28] J. L. Reutter, A. Soto, and D. Vrgoc, “Recursion in SPARQL,” in Proc.
of the 14th International Semantic Web Conference, October 2015, pp.
19–35.

[29] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM Transactions on Database Systems, vol. 34, pp. 16:1–
16:45, September 2009.

[30] M. Schmidt, M. Meier, and G. Lausen, “Foundations of sparql query op-
timization,” in Proc. of the 13th International Conference on Database
Theory, 2010, pp. 4–33.

[31] B. Glimm, A. Hogan, M. Krötzsch, and A. Polleres, “Owl: Yet to arrive
on the web of data?” CoRR, vol. abs/1202.0984, 2012.

[32] P. J. Haas and J. M. Hellerstein, “Online query processing: A tutorial,”
in Proc. of the 19th International Conference on Management of Data.
ACM, 2001, pp. 623–.

[33] E. D. Valle, S. Ceri, F. v. Harmelen, and D. Fensel, “It’s a streaming
world! reasoning upon rapidly changing information,” IEEE Intelligent
Systems, vol. 24, no. 6, pp. 83–89, Nov. 2009.

[34] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well-
conditioned, scalable internet services,” in Proc. of the 18th ACM
Symposium on Operating Systems Principles, 2001, pp. 230–243.

[35] F. N. Afrati and J. D. Ullman, “Transitive closure and recursive datalog
implemented on clusters,” in Proc. of the 15th International Conference
on Extending Database Technology, 2012, pp. 132–143.

[36] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” J. Web Sem., vol. 3, no. 2-3, pp. 158–182,
2005.

[37] S. Stadtmüller, S. Speiser, A. Harth, and R. Studer, “Data-fu: A language
and an interpreter for interaction with read/write linked data,” in Proc.
of the 22nd International Conference on WWW, 2013, pp. 1225–1236.

[38] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic
programs: Combining logic programs with description logic,” in Proc.
of the 12th International Conference on WWW, 2003, pp. 48–57.

[39] A. Hogan, A. Harth, and A. Polleres, “Saor: Authoritative reasoning for
the web,” in Proc. of the Sixth International Semantic Web Conference,
Third Asian Semantic Web Conference, Dec 2008, pp. 76–90.

[40] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal,
“OWL reasoning with webpie: Calculating the closure of 100 billion
triples,” in Proc. of the 7th Extended Semantic Web Conference, 2010,
pp. 213–227.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Habilitationsleistung selbstständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-

nutzt habe.

Karlsruhe, den 21.12.2015

	On the Diversity and Availability of TemporalInformation in Linked Open Data
	Introduction
	Preliminaries
	Temporal Information and Temporal Properties
	Dataset and Experimental Setup
	General Analysis

	Temporal Meta-information Description Models
	Document-Centric Perspective
	Fact-Centric Perspective

	Quantitative and Qualitative Analysis
	Document-Centric Perspective
	Fact-Centric Perspective
	Discussion and Recommendations

	Conclusion
	References

