
Semantic Technologies for Realising Decentralised
Applications for the Web of Things

Felix Leif Keppmann
AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: felix.leif.keppmann@kit.edu

Maria Maleshkova
AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: maria.maleshkova@kit.edu

Andreas Harth
AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.harth@kit.edu

Abstract—The vision of the Internet of Things (IoT) promises
the capability of connecting billions of devices, resources and
things together. In the realisation of this vision, we are currently
neglecting the interoperability between devices that is caused
by a heterogeneous landscape of things and which leads to the
proliferation of isolated islands of custom IoT solutions. A first
step towards enabling some interoperability is to connect things
to the Web and to use the Web stack, thereby conceiving the so-
called Web of Things (WoT). However, even when a homogeneous
access is reached through Web protocols, a common under-
standing is still missing. In addition, decentralised applications,
advocated by the IoT vision, and a-priori unknown requirements
of specific integration scenarios demand new concepts for the
adaptation of things at runtime. Our work focuses on two main
aspects: overcoming not only data but also device and interface
heterogeneity, and enabling adaptable and scalable decentralised
WoT applications. To this end we present an approach for
realising decentralised WoT applications based on three main
building blocks: 1) semantics of the devices’ capabilities and
interfaces, 2) rules to enable embedding controller logic within
device’s interfaces for supporting a decentralised applications,
and 3) support for reconfiguring the controller logic at runtime
for customising and adapting the application. We show how our
approach can be applied by introducing a reference architecture,
provide a thorough evaluation in terms of a proof-of-concept
implementation of an example use case, and performance tests.

Index Terms—Smart Components, decentralised applications,
Web of Things, REST, Linked Data

I. INTRODUCTION

The vision of the Internet of Things (IoT) promises the
capability of connecting billions of devices, resources, and
things together in the Internet. Still, what we are currently
witnessing is the proliferation of isolated islands of custom
IoT solutions, which support a restricted set of protocols
and devices and cannot be easily integrated or extended.
Furthermore, while IoT advocates decentralised applications,
where devices communicate and offer an added value without
a decentralised controlling unit, in reality the implementation
is done via a centralised execution or a registry. A first step
towards enabling some interoperability in the IoT is to connect
things to the Web and to use the Web stack, thereby conceiving
the so-called Web of Things (WoT). However, even when
a homogeneous access is reached through Web protocols, a
common understanding is still missing – specifically in terms
of heterogeneous devices, different programmable interfaces,

and diverse data. Semantic technologies [1] can be used to
describe dataflows on a meta level, capturing the meaning of
devices’ inputs and outputs, and thus abstracting away from
the syntactic structure. However, having the semantics of the
data is not enough. While we can describe the exchanged data,
the resulting applications are limited to a specific domain, and
the heterogeneous device integration is still lacking.

Our work focuses on two main challenges: overcoming not
only data but also device and interface heterogeneity, and en-
abling adaptable and scalable decentralised WoT applications.
In terms of handling the plenitude of existing devices we
advocate an approach based on providing a unified view on
devices and describing them in terms of their programmable
interfaces, since this is how their integration as part of
applications is realised. In terms of realising decentralised
WoT applications, naturally, we want to omit a centralised
controlling unit. Furthermore, it is important to be able to adapt
devices to the requirements of specific integration scenarios,
at deployment time, but more importantly at runtime.

In this context we make the following contributions. First,
we present an approach for realising decentralised WoT solu-
tions based on three main building blocks: 1) the semantics
of the devices’ capabilities and interfaces, 2) rules to enable
embedding controller logic within the device’s interfaces for
supporting a decentralised solution, and 3) support for recon-
figuring the controller logic at runtime, for customising and
adapting the application. Second, we show how our approach
can be applied by introducing a reference architecture, based
on Web and Semantic Web paradigms and technologies. Third,
we back up the architectural design by a specific framework
implementation. Next, we exemplify our work based on a
use case from the domain of factories of the future. Finally
we provide a thorough evaluation in terms of a proof-of-
concept implementation, evaluation of an example use case,
and performance tests.

The remainder of this paper is structured as follows. In
Section II we introduce our motivation scenario, illustrating
the challenges that we are targeting. Section III describes
the design requirements for building WoT systems and the
preliminaries that we build upon. In Section IV we present
our approach, provide an architecture to realise this approach,
and describe our implementation. For evaluation, in Section V

we demonstrate the adaptability of our system at runtime,
integrate an evaluation scenario, and measure the performance
in terms of overhead. We describe related work in Section VI
and conclude in Section VII.

II. MOTIVATION SCENARIO

We motivate the challenges that we want to address with a
specific use case scenario, which we use as a running example
throughout the paper. Current technology developments influ-
ence not only our day-to-day activities but also businesses and
the way products and services are developed and produced.
In this context, we look at a typical factories of the future
situation. In the manufacturing areas of factories, the safety of
humans is an ongoing effort. In particular, the unintentional
intrusion of humans into the operational areas of machines
or robots increases the risk of injury. One way to tackle
this problem is by tracking human bodies and movements,
and matching them against floor plans and safety areas in
order to automatically trigger warning alarms or an emergency
shutdown.

Fig. 1. Scenario: monitoring of a factory floor

Figure 1 shows a simple overview of the monitoring setup,
which involves different devices and services. On the one
hand, the setup includes a tracking service, with depth video
cameras and body tracking algorithms, that tracks bodies,
and identifies the joints and the skeleton structure. On the
other hand, the setup comprises production machines, alarms,
mobile devices, and sensors that provide data to the tracking
service and enable appropriate reactions. This scenario is
implemented as a distributed application with the added value
functionality of using warnings or emergency shutdowns to
save humans from injuries. To reach this goal, the involved
devices (i.e., machines, robots, alarms, or mobiles) need to
exchange data to provide information about the current human
safety state (i.e., if a human joint is within a warning zone or
not). Furthermore, determining when a human joint intrudes
a danger zones is realised by matching the joint coordinates,
calculated by the tracking algorithms, against the floor plan
and safety areas. Both, the matching of coordinates as well
as informing devices about required actions are computational
elements, e.g., application logic, that need to be provided by
the distributed application.

The specific challenges that we want to highlight are
threefold: 1) different type of devices, with diverse interfaces,
and producing and consuming a variety of data forms and
structures need to be integrated; 2) while we have components,
such as the tracking devices, that need to be coordinated as part
of providing the application’s functionality, conforming to the
WoT vision, we want to avoid having a centralised controller
and advocate a distributed solution; 3) the positions of the
machines or the safety areas may change over time, however,
having to redesign and redeploy the application every time
the setup changes is inefficient. Therefore, a flexible solution
is required, where the tracking service and devices can be
developed at design time and additional adaptation to specific
requirements can be integrated later, i.e., during deployment,
or runtime.

In the following sections we use this scenario to motivate
some of the design requirements for our system and to provide
an exemplary implementation as well as a use case-based
evaluation.

III. DESIGN REQUIREMENTS AND PRELIMINARIES

Requirements Engineering (RE) [2] aims to determine,
model and specify the required and desired properties of
software systems. However, what we are currently witnessing
in the context of developing WoT systems is the diversity of
domain-specific and use case-specific systems that are not so
much concerned with thorough requirements analysis but are
rather focused on quickly providing the functionality that is
needed. We argue that the reasons for this are twofold. First,
RE is only now starting to develop the means to support WoT
system development, beginning with first steps, for example, in
the representation of context. Second, traditional RE builds on
the assumption that the knowledge, which is used to formulate
the requirements exists a-priori and can be captured and
specified. However, for WoT systems this assumption quite
frequently does not hold.

Since it is based on the IoT, the WoT shares many character-
istics with Wireless Sensor and Actor Networks (WSANs) and
Cyber Physical Systems (CPS), which involve the connection
of real world objects into networked information systems
including the Web [3]. Therefore, we approach the require-
ments analysis by exploring how the requirements for CPS
propagate to also define the WoT systems. In particular, the
top requirements for building cyber-physical systems (CPS
requirements (CRQ)) are as follows [4]:

WoT frameworks for CPS systems can be developed to
augment the IoT and thus deal with issues such as information-
centric protocols, deterministic QoS, context-awareness, etc. In
this way some of the requirements listed above can already be
addressed. Still, quite a few of the listed points remain relevant
on the WoT level or translate to new ones. In the following we
have used the CPS requirements and the motivation scenario
in order to define requirements for realising WoT applications
(WoT Requirements (WRQ)) based on semantic technologies.

In our work we focus on the first five requirements (WRQ1-
WRQ5) and group these into three main objectives that we

CRQ1 Compositionality:
Defining components and composing them

CRQ2 Distributed Sensing, Computation and Control:
No centralised sensing, computation or control

CRQ3 Physical Interfaces and Integration:
Realising contact with the physical world

CRQ4 Human Interfaces and Integration:
Need to interface the CPS with human influence and perception

CRQ5 Information:
From Data to Knowledge: capturing raw−data−to−trusted−knowledge
dependency

CRQ6 Privacy, Trust, Security:
Privacy, trust and security requirements for systems based on the
physical layer

CRQ7 Modelling and Analysis− Heterogeneity, Scales, Views:
Dealing with heterogeneity in terms of creating scales and views over data

CRQ8 Software:
Traditional programming languages and structures are not really suitable

CRQ9 Robustness, Adaptation, Reconfiguration:
Dealing with dynamic environments

CRQ10 Societal Impact:
Need for social acceptance of the new systems

CRQ11 Verification, Testing and Certification:
Approaches for ensuring correctness

Listing 1. Requirements for building Cyber Physical Systems

WRQ1 Provide Device Abstraction in Terms of Components:
Overcoming devices heterogeneity by defining a converging abstraction over
devices in terms of components (CRQ1)

WRQ2 Support Uniform Interfaces and Integration:
Defining compatible uniform interfaces for devices, which support the creation
of composite applications (CRQ3)

WRQ3 Knowledge Representation:
Overcoming data heterogeneity via semantic representation (CRQ5, CRQ7)

WRQ4 Support Distributed Computation and Control:
No centralised computation or control, application logic is distributed among
participating components, without having a centralised controller (CRQ2)

WRQ5 Enable Robustness, Adaptation, Reconfiguration:
Supporting adaptability and reconfiguration not only at design time but also
at deployment and runtime (CRQ9)

WRQ6 Provide Human Interfaces and Interaction:
Need to interface with human influence (CRQ4)

WRQ7 Ensure Privacy, Trust, Security:
Privacy, trust and security specific for WoT systems (CRQ6)

WRQ8 Provide Adequate Software:
Programming languages and structures suitable for WoT (CRQ8)

WRQ9 Consider Societal Impact:
Need for social acceptance of the new systems (CRQ10)

WRQ10 Support Verification, Testing and Certification:
Approaches for ensuring correctness (CRQ11)

Listing 2. Requirements for building WoT systems

want to address: 1) Overcoming heterogeneity of data, devices
and interfaces; 2) Realising decentralised applications in terms
of computation and control; 3) Supporting adaptability at
deployment and runtime.

We reuse existing Web and Semantic Web paradigms and
technologies to cope with the requirements, and introduce
these briefly as part of preliminaries.
Addressing the heterogeneity of data, devices and inter-
faces. In relation to handling the heterogeneity of existing
devices, we advocate an approach based on providing a
unified view on devices and describing them in terms of their
programmable interfaces, since this is how their integration as
part of applications is realised. In particular, we focus on Web
Application Programming Interfaces (Web APIs) conforming
to the Representational State Transfer (REST) [5] architectural
style and data modelling according to the Linked Data (LD) [6]

principles. This is not a novel approach but is rather adapted
from the area of Semantic Web Services and Application
Programming Interfaces (APIs) [7]. REST introduces flexible
and loosely coupled integration of systems, relying on Uniform
Resource Identifiers (URIs) for the identification of resources
in combination with Hypertext Transfer Protocol (HTTP) for
data transport, accessing and modification of resources. The
Linked Data principles introduce with the Resource Descrip-
tion Framework (RDF) [8] a formal graph-based knowledge
model, semantic annotation of data, as well as interlinking of
datasets, again based on URIs. The combination of REST and
Linked Data principles has been recently standardised as a first
version of the Linked Data Platform (LDP) [9].

Addressing the need for decentralised applications. The
vision of Smart Web Services (SmartWS) [10] introduces
a new type of Web Services (WS) that not only provides
remote access to resources and functionalities, by relying
on standard communication protocols, but also encapsulates
“intelligence”. Smartness features can include, for instance,
context-based adaptation, cognition, inference and rules that
implement autonomous decision logic in order to realize
services that automatically perform tasks on behalf of the
users, without requiring their explicit involvement. SmartWS
conform to the natural evolution of WS, starting with a number
of heterogeneous protocols, moving on the standardisation in
terms of the WS-* stack and adding task automation trough
semantics and Semantic Web Services [11]. In this context,
we address the need for decentralised applications by advo-
cating the SmartWS approach, where component interfaces
are enhanced with simple logic in order to perform some
autonomous decisions.

Addressing the need for adaptability at deployment and
runtime. Currently we are faced with integration scenarios,
where applications must be adapted to meet certain needs
that are hardly known during the design time. We apply two
approaches to realise adaptability at runtime and design time.
First, the simple logic within the SmartWS is implemented
in terms of rules, where we take advantage of Notation3
(N3) [12] as an assertion and logic language for RDF. We
provide mechanisms to overwrite these rules, to be able to
reconfigure the components. Second, we describe what parts
of the resources of a component are exposed via the inter-
face by using SPARQL Protocol and RDF Query Language
(SPARQL) [13] CONSTRUCT queries. These queries can also
be overwritten, thus providing options to reconfigure the in-
terface. The overwriting of rules and SPARQL CONSTRUCT
queries can be done while the application is being set up or
while it is already running.

IV. REALISING DECENTRALISED WOT APPLICATIONS

The fulfilment of the vision of the WoT requires to extend
the current Web with support that enables real-world objects
to seamlessly become a part of it. Our goal is not to impose
the one architecture for realising WoT application. Instead we
aim to provide a set of constraints and principles backed up by
specific building blocks for creating WoT applications, which

address the requirements described in Section III. The main
contribution of our work is to take the next logical step beyond
having only data semantics or only interconnected devices in
order to achieve a Web where real world objects can become
first class citizens.

Our approach for developing WoT applications is based on
introducing an abstraction for the convergence of all participat-
ing devices, data sources, algorithms, implemented functional-
ities, etc., in terms of components that provide resources and
are accessible via uniform interfaces. These components can
be composed into a WoT application. To provide support for
a decentralised solution, without centralised computation or
control, we introduce an interpretation layer between the data
and functionality of components, and the APIs, which they
expose to the network. This layer enables, on the one hand,
adaptability of the interfaces to the requirements of specific
integration scenarios and, on the other hand, deployment of
intelligence (formalised as rules) on behalf of distributed
applications. This intelligence ranges from simple calculations
to custom behaviour or decisions, which can be reconfigured
at both design time and runtime. As a result, our component-
based approach enables a flexible way to compose larger
distributed applications.

A. A Smart Components-based Architecture for Things

We introduce the abstraction of Components, which encap-
sulate certain data or functionality, and can be composed by
integrating these data and functionality into distributed appli-
cations to achieve added values. What components encapsulate
can range from pure data sets (e.g., the floor plan with safety
zones in our scenario) to devices, which dynamically produce
data (e.g., our tracking service), to systems that react to state
changes (e.g., machines, which shut down if their safety zones
are violated).

We can build components that – passively – provide an
API, with which other components interact, or we can build
components, which – actively – interact with APIs of other
components, or we can build components which include both.
The differentiation between active and passive is based on
whether the component triggers the communication or not.
This distinction is necessary because in the context of WoT,
the classical client and server roles are becoming inapplicable.
A mobile device can have a client role by displaying infor-
mation (e.g., a map or the current temperature) and at the
same time act as a server by providing the current geolocation,
all in one scenario. Therefore, we do not distinguish between
clients and servers, but whether a component actively triggers
the communication with other components or not.

We introduce the notion of Smart Components1, when they
are built following our architectural approach: 1) REST for
realising interfaces and the communication between compo-
nents, 2) semantics for describing the exchanged data, interface
resources, and components’ capabilities, and 3) decentralised
smartness of each component, described in terms of rules.

1Hereafter, when we talk about components, we mean smart components.

The use of “smart” as a way to characterise certain features
is currently very common and a bit overused. However, it
captures very well the properties of the components that we
want to highlight, namely the encapsulation of autonomous
logic and the adaptability.

Fig. 2. Monitoring with Smart Components. The is scenario realised with five
components: three smart components (tracking and two robots), one compo-
nent accessible over a REST API (floor plan), and one component, which
only requests and displays data (visualisation). No centralised controller.

We take advantage of the resource-oriented viewpoint within
the architectural paradigm REST. Resources expose relevant
parts of a component’s state to the network, identified by URIs
and accessible as well as modifiable through HTTP. Remote
components may interact with the resources of a component,
to react to the local component’ state or to transition the
component into a new state. The HTTP communication with
resources is stateless and the resources are predefined or may
be created as sub-resources of container2 resources. In partic-
ular, some resources are defined as SPARQL CONSTRUCT
queries, which can be modified (at design or runtime) to rede-
fine, which states are exposed by the component. We do not
make the assumption that all participating components need to
be smart or that all devices must offer REST interfaces directly,
already provided by each individual thing. To the contrary,
for certain use cases, it makes more sense to take particular
implementations, including highly specialised protocols, as
they are and to encapsulate them to expose their resources
through a REST API. In this way we enable the overall
integration, while the interactions behind the encapsulating
interface remain invisible.

Components have a set of Resources, which provide state
representation adhering to the RDF model, and can be avail-
able only internally or be exposed as part of the interface.

2Container resources conceptually contain a set of sub-resources and follow
a defined behaviour for accessing and modifying this set, as, for example,
specified by the LDP specification.

Fig. 3. Smart Component

Therefore, we distinguish between: 1) internal resources, 2)
declared resources, and 3) meta resources. Internal Resources
(IRes) encapsulate all data and functionality custom to a com-
ponent and represent its state. By accessing these resources
we can get the component’s state or can cause the system
to react by changing its state through resource modification.
However, these resources are only accessible internally and
are – following our black box approach – not identifiable
or accessible in a way, which is prescribed by the architec-
ture. Declared Resources (DRes) form the public API of
a component. These resources adhere to both architectural
paradigms, Linked Data and REST, i.e., they are identified
by URIs, accessible by HTTP with interaction restricted to
HTTP verbs, and represented according to RDF. We declare
theses resources as graph patterns, defining which part of the
internal resources should be exposed over the public interface.
The declared resources can be accessed or modified by the
other components. Meta Resources (MRes) provide the means
to reconfigure and adapt a component. By interacting with
these resources, we are able to access and modify both the
definition of declared resources as well as the rules defining
the decentralised logic of the component.

Each component encapsulates an Interpreter (Int). It pro-
vides the capabilities to 1) read and modify the state of
internal resources, 2) read and modify the state of resources
of other components, 3) evaluate graph patterns of declared
resources, and 4) interpret decentralised logic written in a
declarative rule language. In other words, the purpose of
the interpreter is to negotiate between the private API of a
component represented by internal resources, the public API
of a component, represented by declared resources, and the
interaction with resources provided by other components.

We specify the decentralised logic within a component as a
set of rules that we refer to as Programs (P). The declarative
rule language, in which these programs are defined, provides
adequate means to express RDF graph transformations, infer-

encing, and interaction with resources of other components.
Optionally, the language may support, in coordination with the
interpreter, further capabilities to ease the declaration of pro-
grams, e.g., built-in mathematical functions for calculations,
which exceed pure rule-based logic.

We call the actual interpretation of a program and eval-
uation of triple patterns a program run. During a run, the
interpreter maintains an internal RDF graph with all states
of known resources. This RDF graph is 1) enriched by the
states of internal resources, 2) by requested states of declared
resources, and 3) by inferred knowledge. The integration of
the interpreter and the internal resources, i.e., the encapsulated
data and functionality, is seen as part of the black box within
the component.

Designed in such a way, smart components introduce a lot of
flexibility by adding only little overhead (see Section V). There
are three different phases in a component’s life cycle: design,
deployment, and runtime. With a generic set of meta resources,
we introduce the only pre-designed part of the component’s
interface. It enables us to declare at runtime custom behaviour
(e.g., decisions, or transformations) and use case-specific de-
clared resources. Therefore, quite general components can be
developed at design time, and be subsequently configured and
adapted to fit specific scenarios during runtime.

B. Implementation
In this section we describe how we practically implement

individual smart components as well as complete scenarios.
First we provide details on the interpreter and rule-based pro-
grams, followed by description of the resources and interfaces.

The Interpreter is implemented by Linked Data-Fu
(LD-Fu)3 [14], [15], which offers a generic approach for the
composition and integration of Linked Data REST resources.
The Programs are realised with the LD-Fu declarative rule
language, which is based on N3, and provides, for example,
deduction of knowledge, by supporting reasoning over ontolo-
gies, interaction with external resources, by supporting HTTP
GET, PUT, POST, and DELETE methods, and mathematical
calculations, by supporting built-in functions. In addition,
evaluation of conjunctive queries, i.e., triple patterns, over
RDF graphs is integrated. The LD-Fu interpreter handles the
evaluation of rules, the evaluation of queries, as well as the
execution of HTTP-based interaction with external resources.
Internally, the interpreter maintains a RDF graph consisting of
all RDF triples that are added during a run, e.g., by adding
the payload returned HTTP GET requests, or inferencing,
and evaluates the programs and queries against this graph
until a fixpoint is reached. Different integration scenarios
with LD-Fu as central controller have been explored, e.g.,
the integration of static and dynamic Linked Data [16], or
high-performance Linked Data processing for virtual reality
environments [17]. We reuse and extend the implementation by
enabling dynamic adaptation of declarative rule programs and
queries at runtime, i.e., enable the access to and modification
of interpreter instances via meta resources.

3See http://linked-data-fu.github.io for details.

http://linked-data-fu.github.io

TABLE I
INTERFACE FORMED BY META RESOURCES

Resource Content Type Methods

Instance Container RDF GET/POST

↪→ Instance (1-n) RDF GET/PUT/DELETE

↪→ Program Container RDF GET

N3 POST

↪→ Program (1-n) N3 GET/PUT/DELETE

↪→ Resource Container RDF GET

SPARQL Query POST

↪→ Resource (1-n) SPARQL Query GET/PUT/DELETE

To support the adaptation of components at runtime we
use the Meta Resources, which form a (meta)-interface that
provides access to the interpreter’s state and, thereby, a generic
way to influence the component’s behaviour. In Table I, we
show an overview of our current meta interface implementa-
tion, which provides access to 1) interpreter instances, 2) rule
programs, and 3) declared resources. We support separate
instances of the interpreter to allow independent integration
in more than one distributed application, i.e., we support
application-specific combinations of interpreter configurations,
programs, and resources, which run independently of each
other. Furthermore, we can specify an arbitrary number of
programs, with the content type of N3, and declared resources,
with the content type of SPARQL query. All this changes can
be made at runtime via the meta resources.

TABLE II
INTERFACE FORMED BY DECLARED RESOURCES

Resource Content Type Methods

Instance RDF POST

Instance SPARQL Query POST

Resource RDF GET

Once created via interaction with the meta interface, we can
interact with the Declared Resources, as shown in Table II,
having the content type of a supported RDF serialisation,
and retrieve representations of the declared resources (i.e., the
evaluation result of the underlying SPARQL construct query).
In addition, we support data handling processes for resources
of instances through HTTP POST requests.

We support different ways for the integration of the LD-Fu
interpreter with the Internal Resources provided by compo-
nents: first, as HTTP-based standalone wrapper, where the
interpreter interacts with already provided Linked Data REST
resources; second, via command line-based integration with
support for files and pipes; third, via code-based programmatic
integration by utilising LD-Fu libraries.

In summary our implementation covers: 1) the interpreter
(LD-Fu), 2) programs (LD-Fu N3 rule programs), which are
interpreted by the interpreter during program runs (LD-Fu in-

terpreter runs), 3) declared resources (SPARQL CONSTRUCT
queries), and 4) meta resources, which enable adaptation at
runtime (LD-Fu API). Currently, we support time-based (fre-
quency) interpreter runs, except for data handling processes.

For the purpose of demonstration and in order to support
our evaluation, we built a smart component that encapsulates
body tracking capabilities. We developed Natural Interaction
via REST (NIREST)4 to encapsulate depth camera support and
body tracking algorithms on top of the depth video image, as
well as RDF resources for the relevant data, i.e., for skeleton
information of tracked bodies. We integrated NIREST and the
LD-Fu interpreter at code level, and use these as part of the
evaluation given in the following section.

V. EVALUATION

We provide a thorough evaluation of our approach and
implementation in terms of: 1) showing the conformity to
the design requirements derived in Section III, 2) building
up a simplified evaluation scenario based on our motivation
scenario with an explanation of provided internal resources,
2a) evaluating the deployment of decentralised controlling
logic at runtime by initialisation of interpreter instances and
deployment of calculation programs, 2b) evaluating the de-
ployment of passively provided declared resources and actively
executed interaction between components at runtime, 3) show-
ing the re-adaptation for the distributed application at runtime,
by switching the interaction direction as well as involving a
new component, and 4) providing performance measures my
determining the overhead, in terms of delay in milliseconds,
resulting from using smart components.

A. Conformity to the Design Requirements

Our approach and implementation are based on compo-
nents, which are an abstraction that we introduce in order
to overcome devices heterogeneity (WRQ1). Furthermore,
we support uniform interfaces and integration by relying on
REST and Linked Data principles (WRQ2). Similarly, we use
semantic representations for the interfaces and data exchange
to overcome data heterogeneity (WRQ3). The approach of
having distributed logic, within each component, supports dis-
tributed computation and control (WRQ3). Finally, we enable
the key features of robustness, adaptation, reconfiguration by
providing interfaces and internal logic that can be reconfigured
both at design and runtime (WRQ5). Even tough not in the
focus of our work, we also provide adequate software, in terms
of, for example, the LD-Fu interpreter and declarative rule
language (WRQ8).

B. Evaluation Scenario and Internal Resources

Due to space constraints, we simplify our motivation sce-
nario for the evaluation. We consider two smart components:
component C1 (Sensor), which includes a depth video sensor
and provides body tracking functionality, and component C2

4See http://github.com/fekepp/nirest for details.

http://github.com/fekepp/nirest

Listing 3. Internal Resources
< n i r e s t : / / user /0 >

n i r e s t : ske le ton [
n i r e s t : j o i n t P o i n t [

n i r e s t : coord ina te [
n i r e s t : x "459.8463"^^ xsd : f l o a t ;
n i r e s t : y "404.0497"^^ xsd : f l o a t ;
n i r e s t : z "2037.2391"^^ xsd : f l o a t ;
a n i r e s t : Coordinate] ;

a n i r e s t : R ightHandJoin tPoin t] ;
. . .

(Robot), which represents a machine or robot. In the dis-
tributed application, which we compose first, the robot com-
ponent informs itself and reacts on distance alarms provided
by the sensor. In a second step, we re-adapt the application
by switching from pull to push communication between the
components and by moving decisions partially to the robot.

In Listing 3, we show a snippet from the RDF5 provided
by internal resources of the sensor component. For every
person in front of the depth video sensor, the integrated
tracking software calculates – once the person is recognised –
coordinates of the center of mass and of different joint points
as well as confidence values for each coordinate. In the listing,
we show one out of several coordinates in the tracked skeleton
of a person that, joined with all other tracked skeletons,
forms the internal knowledge graph, which is included in each
interpreter run of the sensor component.

C. Deployment and Adaptability of Decentralised Logic

TABLE III
ADAPTATION OF SMART COMPONENT C1 (SENSOR) AT RUNTIME

#
Identifier Method Content Type

Payload

1
http://c1/scenario PUT text/turtle

<> ldfu:delay 100 ; a ldfu:Configuration .

2
http://c1/scenario/p/pro1 PUT text/n3

{ ?point nirest:coordinate ?coordinate .
?coordinate nirest:x ?x ; nirest:y ?y ; nirest:z ?z .
(?x "2") math:exponentiation ?x_ex .
(?y "2") math:exponentiation ?y_ex .
(?z "2") math:exponentiation ?z_ex .
(?x_ex ?y_ex ?z_ex) math:sum ?sum .
?sum math:sqrt ?square_root .
?square_root math:lessThan "1000.0" . }
=>
{ ?point scenario:distance ?square_root .
?point scenario:alarm "true" . } .

3
http://c1/scenario/r/res1 PUT application/sparql-query

CONSTRUCT { ?point scenario:shutdown "true" . }
WHERE { ?point scenario:alarm "true" . }

We assume that both components are already deployed and
started, but neither provide the data nor the communication
that is required by our evaluation scenario. The components

5Due to space constraints, prefixes are omitted in all listings and tables.

TABLE IV
ADAPTATION OF SMART COMPONENT C2 (ROBOT) AT RUNTIME

#
Identifier Method Content Type

Payload

4
http://c2/scenario PUT text/turtle

<> ldfu:delay 100 ; a ldfu:Configuration .

5
http://c2/scenario/p/pro1 PUT text/n3

{ [] http:mthd httpm:GET ;
http:requestURI <http://c1/scenario/r/res1> . }

provide their meta interfaces as entry point for adaptation
at “http://c1/” (C1) and “http://c2/” (C2). We list all HTTP
interactions with the meta interfaces in Table III (C1) and
Table IV (C2). Specified for each command are the identifier,
i.e., the target URI, the method, i.e., HTTP verb, the content
type, as well as the payload to be sent to the target URI. These
commands may be executed by any HTTP-conform client.

We first initialise an interpreter instance, i.e., LD-Fu in-
stance, for our evaluation scenario at both components by
executing Command #1 in Table III for C1 and Command #4
in Table IV for C2. With distinct interpreter instances, we
support separately interpreted programs and thus enable the
smart component to be part of multiple independent distributed
applications at the same time. Both commands create inter-
preter instance resources, identified by “http://c1/scenario” for
C1 and “http://c2/scenario” for C2. They contain the same
payload, which configures the LD-Fu engine to continuously
interpret programs with a delay of 100 milliseconds.

As part of the meta interface, interpreter instance resources
provide container6 sub-resources, which allow the creation
of programs and declared resources, e.g., for C1 the con-
tainer for programs is identified by “http://c1/scenario/p/”
and the container for declared resources is identified by
“http://c1/scenario/r/”. Both, programs and declared resources,
that are created as sub-resources of these containers, are
included and evaluated during each interpreter run. To adapt
the component to our evaluation scenario, we interact with
the program container of C1 and create a program sub-
resource, identified by “http://c1/scenario/p/pro1”, as shown
in Command #2 in Table III. The program included in the
payload contains a single rule, which calculates the Euclidean
distance from the sensor for every point in the internal RDF
knowledge graph. Therefore, built-in mathematical functions
are used, that are interpreted by the LD-Fu engine, which
calculates the result and binds it to the specified variables.
Once the condition – distance less than 1000 millimetres – is
true, the internal RDF graph is enriched with a triple adding
the distance as well as a triple adding a custom alarm to the
subgraph of the respective point. We are now able to use this
information in further rules and queries.

6The container resources are designed as LDP basic containers.

D. Deployment and Adaptability of Interfaces and Interaction

With respect to our evaluation scenario, we need to establish
a communication between the components. In particular, C2,
the robot, should request information about an emergency
shutdown, which C1, the sensor, provides.

First, we use a declared resource for passive provisioning
of alarm information, which is created as sub-resource of
the resources container by Command #3 in Table III and
identified by the URI “http://c1/scenario/r/res1”. The SPARQL
CONSTRUCT query, that we include as payload, constructs a
custom shutdown triple if the internal RDF graph was enriched
by the calculation program, i.e., sub-graphs of points have been
marked with an alarm triple. During every interpreter run, i.e.,
every 100 milliseconds, the SPARQL CONSTRUCT query is
evaluated and the result provided for HTTP requests7 at the
identifier.

Second, we use an interaction rule deployed within a
program at C2 to request the information from the de-
clared resource of C1. Command #5 in Table IV shows
the program as payload, which is identified by the URI
“http://c2/scenario/p/pro1”. The single rule included in the
program is a head-only rule, i.e., no condition in the rule
body has to be meet and the head is evaluated during every
run. We use ontologies, in particular marked by the prefixes
“http” and “httpm”, that are interpreted by the LD-Fu engine
as HTTP commands and executed as HTTP requests. The
payload of the requests, if given and parseable as RDF, is
added to the internal RDF graph of the current interpreter run
and may be subject to further rules. In our case, we cause
the interpreter of C2 to issue a HTTP GET request to the
content of the declared resource of C1, identified by the URI
“http://c1/scenario/r/res1”, during every run and add it to the
internal RDF graph.

Thereby, the data flow between C1 and C2, as required by
the first version of the evaluation scenario, is established in a
pull-based manner. We do not explicitly show how information
about a shutdown is internally handled by C2. This may be,
for example, analogously solved by a query registered at the
interpreter that causes the robot to react appropriately if the
information about an emergency shutdown is available.

E. Re-Adaptation of the Application to new Requirements

In order to show the flexibility of our approach, we re-adapt
the distributed application at runtime to new requirements.
Instead of pulling shutdown information from the sensor (C1),
the robot (C2) should get informed as soon as a distance
alarm is recognised. Furthermore, the C2 should itself decide
to inform a subcomponent (C3), if the distance is less than
half of the original threshold. We show the commands used
for the adaption in Table V.

First, we re-adapt the program that we deployed before at
C2, as shown in Command #6 in Table V. The program, iden-
tified by “http://c2/scenario/p/pro1”, is overwritten by single

7The result is provided for any valid content type of a supported RDF
serialisation format set in the accept header of the HTTP GET request.

TABLE V
RE-ADAPTATION OF SMART COMPONENTS C1/C2 AT RUNTIME

#
Identifier Method Content Type

Payload

6
http://c2/scenario/p/pro1 PUT text/n3

{ ?point scenario:alarm "true" ;
scenario:threshold ?threshold ; scenario:distance ?distance .
(?threshold "2") math:quotient ?quotient .
?distance math:lessThan ?quotient . }
=>
{ [] http:mthd http-m:PUT ;
http:requestURI <http://c3/res> ;
http:body { <> scenario:shutdown "true" . } . } .

7
http://c1/scenario/p/pro2 PUT text/n3

{ ?point scenario:alarm "true" ; scenario:distance ?distance . }
=>
{ [] http:mthd http-m:POST ;
http:requestURI <http://c2/scenario> ; http:body {
<> scenario:alarm "true";
scenario:threshold "1000.0"; scenario:distance ?distance .
} . } .

8
http://c1/scenario/r/res1 DELETE -

-

rule encoding the decision and interaction with C3. Therefore,
once information about a point, marked with an alarm and
accompanied by a threshold and distance value, is available
in the internal RDF graph of C2, the threshold is divided by
two and compared to the distance. If the condition is true,
the rule head is evaluated by the interpreter, which includes
an interaction rule that updates a resource at C3, identified
by “http://c3/res”. Compared to the situation before, we split
calculation logic and distributed it to two components.

Second, we deploy a separate program with an interaction
rule at C1, shown in Command #7 in Table V and identified
by the URI “http://c1/scenario/p/pro2”. Thereby, we replace
the – already overwritten – pull-based interaction of C2 with
C1 by a push-based interaction of C1 with C2. The program
included as payload consists of one interaction rule that
instructs the interpreter to execute a HTTP POST request at
the URI of the interpreter instance resource for our evaluation
scenario of C2, i.e., at “http://c2/scenario”. In the payload we
include the distance and threshold information. The execution
is triggered by information about points that have been marked
with an alarm triple and corresponding distance. HTTP POST
request at interpreter instance resource cause the interpreter
to add a give payload to the internal RDF graph and run an
interpretation of all programs and declared resources.

Optionally, we can delete the obsolete declared resource
created for the first version for our evaluation scenario, shown
in Command #8 in Table V.

F. Performance Measures

Finally, we focus on processing overhead caused by the
interpreter instance and program runs. In Figure 4 we visualise
the measurements of interpreter runtimes for our scenario

Fig. 4. Runtimes of Interpretations; HTTP interaction excluded/included

example. During 100 consecutive runs, with 100ms delay
between interpretations, on an average computer8, we mea-
sured the duration of running an instance without programs
or declared resources (ins), and sequentially added the cal-
culation program (ins/cal), the declared resource (ins/cal/res),
and the interaction program (ins/cal/res/int). The diagram at
the top shows the measured durations, without the actual
execution of the HTTP interaction. In the diagram at the
bottom, we include the HTTP interaction to a host on the
same machine (ins/cal/res/int (http)). Despite some outliers,
the duration for an instance without programs or declared
resources (ins) is about 0.4ms (median: 0.42ms), and the
duration for an instance with programs and resources is about
0.9ms (median: 0.86ms, 0.83ms, and 0.89ms). Finally the
measured duration with executed local HTTP interaction is
about 6.6ms (median: 6.63ms). Therefore, the overall overhead
of using smart components results in minimal delays.

8Intel Core i7-3520M CPU @ 2.90GHz.

VI. RELATED WORK

Related work can be split into three main areas: 1) read-
write Linked Data (LD), 2) the Web of Things (WoT), and 3)
the Semantic Web of Things (SWoT).

Read-write Linked Data Read-write Linked Data is build
upon the idea of combining the architectural paradigms Linked
Data (LD) [6] and Representational State Transfer (REST) [5].
This combination has been used in several approaches, e.g.,
Linked Data Fragments (LDF) [18], Linked APIs (LAPIS) [7],
Linked Data Services (LIDS) [19], RESTdesc [20], or Linked
Open Services (LOS) [21]. Recently, standardization efforts
for the integrated use of Linked Data and REST led to the
Linked Data Platform (LDP) [9] W3C recommendation, that
standardizes a read-write Linked Data architecture, including
RDF and non-RDF resources, container resources for col-
lections, as well as rules for HTTP-based interaction with
resources.

Web of Things The IoT [22] paradigm is about connecting
every device, application, object, i.e., thing, to the network, in
particular the Internet and thus to ensure connectivity. The Web
of Things (WoT) [23] builds on top of this paradigm to provide
integration not only on the network layer but also on the
application layer, i.e., the Web. The goal is to make things part
of the Web by providing their capabilities as REST services.
Therefore, common existing Web technologies are introduced,
e.g., URIs for identification and HTTP as application protocol
for transport and interaction. Integrating these technologies has
been, for example, addressed for embedded devices in [24].

Semantic Web of Things The extension of IoT to WoT
is primarily focused on the interoperability between things on
the application layer. In order to foster horizontal integration
and interoperability the Semantic Web of Things (SWoT) [25]
focuses a common understanding of multiple capabilities and
resources towards a larger ecosystem by introducing Semantic
Web technologies to the IoT. Challenges related to SWoT have
been, for example, addressed by the SPITFIRE [26] project, or
the Micro-Ontology Context-Aware Protocol (MOCAP) [27],
both in the area of sensors. We build upon several synergies
introduced by a common resource-oriented viewpoint of the
Linked Data and REST paradigms. These paradigms also play
a key role in WoT and in particular SWoT to cope with
heterogeneous data models and interaction mechanisms. How-
ever, integrating decentralised components into applications
without central control, even with a clear interaction model
and semantically powerful data model, requires to distribute
the controlling intelligence, at least to some extent, to the
components. Our approach aims to enable the adaptation of
components to specific application scenarios at runtime, while
still being compatible with other approaches based on read-
write Linked Data REST resources.

VII. CONCLUSION

Currently we are witnessing the increased use and popu-
larity of mobile devices, wearables and sensors. This trend
impacts not only our daily lives but also the way that products
and services are being designed, manufactured and offered.

The IoT and WoT lay the foundation for integrating devices by
providing network connectivity and a stack of communication
protocols. The SWoT aims to enhance these in order to address
the lack of interoperability, resulting from the heterogeneity of
data and resources. We aim to contribute to the evolution of
the Web by taking these developments one step further. In
particular, our work focuses on two main aspects: overcoming
not only data but also device and interface heterogeneity, and
enabling adaptable and scalable decentralised WoT applica-
tions. To this end we use semantics to capture the devices’
capabilities and interfaces, and rules to enable embedding
controller logic within the device’s interfaces for supporting
a decentralised solutions. We support the reconfiguration of
the controller logic at runtime in order to provide options
for customising and adapting the application. Furthermore,
we show how our approach can be applied by introducing
a reference architecture, backed up by a specific framework
implementation. We believe that providing support for inter-
operability but also offering simple mechanisms for adapting
the interfaces and controller logic of devices are key for
contributing towards the evolution of the Web.

REFERENCES

[1] P. Hitzler, M. Krotzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. CRC Press, 2009.

[2] M. Jackson, “Defining a Discipline of Description,” IEEE Software,
vol. 15, no. 5, pp. 14–17, 1998.

[3] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things
framework for cyber-physical systems,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 9, pp. 905–923, 2011.

[4] National Science Foundation, “Cyber-Physical Systems Summit,” Na-
tional Science Foundation, Tech. Rep., 2008.

[5] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, USA, 2000.

[6] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” Semantic Web and Information Systems, vol. 5, no. 3, pp. 1–22,
2009.

[7] S. Stadtmüller, S. Speiser, and A. Harth, “Future Challenges for Linked
APIs,” in Workshop on Services and Applications over Linked APIs and
Data at the European Semantic Web Conference, 2013.

[8] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and
Abstract Syntax,” W3C, Recommendation, 2014, http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/. Latest version available at
http://www.w3.org/TR/rdf11-concepts/.

[9] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform
1.0,” W3C, Recommendation, Feb. 2015, http://www.w3.org/TR/2015/
REC-ldp-20150226/. Latest version available at http://www.w3.org/TR/
ldp/.

[10] M. Maleshkova, P. Philipp, Y. Sure-Vetter, and R. Studer, “Smart Web
Services (SmartWS) - The Future of Services on the Web,” Transactions
on Advanced Research, vol. 12, no. 1, pp. 15–26, 2016.

[11] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.

[12] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable
RDF syntax,” W3C, Team Submission, 2011, http://www.w3.org/
TeamSubmission/2011/SUBM-n3-20110328//. Latest version available
at https://www.w3.org/TeamSubmission/n3/.

[13] C. B. Aranda, O. Corby, S. Das, L. Feigenbaum, P. Gearon, B. Glimm,
S. Harris, S. Hawke, I. Herman, N. Humfrey, N. Michaelis, C. Ogbuji,
M. Perry, A. Passant, A. Polleres, E. Prud’hommeaux, A. Seaborne, and
G. T. Williams, “SPARQL 1.1 Overview,” W3C, Recommendation, Mar.
2013, http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.
Latest version available at http://www.w3.org/TR/sparql11-overview/.

[14] S. Stadtmüller, S. Speiser, A. Harth, and R. Studer, “Data-Fu: A
Language and an Interpreter for Interaction with Read/Write Linked
Data,” in International World Wide Web Conference, 2013.

[15] S. Stadtmüller, “Dynamic Interaction and Manipulation of Web Re-
sources,” Ph.D. dissertation, Karlsruhe Institute of Technology, Karl-
sruhe, Germany, 2016.

[16] A. Harth, C. A. Knoblock, S. Stadtmüller, R. Studer, and P. A. Szekely,
“On-the-fly Integration of Static and Dynamic Linked Data,” in In-
ternational Workshop on Consuming Linked Data at the International
Semantic Web Conference, 2013.

[17] F. L. Keppmann and S. Stadtmüller, “Semantic RESTful APIs for
Dynamic Data Sources,” in Workshop on Services and Applications over
Linked APIs and Data at the European Semantic Web Conference, 2014.

[18] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht,
M. Vander Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle, “Querying Datasets on the Web with High Availability,” in
International Semantic Web Conference, 2014.

[19] S. Speiser and A. Harth, “Integrating Linked Data and Services with
Linked Data Services,” in Extended Semantic Web Conference, 2011.

[20] R. Verborgh, T. Steiner, D. van Deursen, R. van de Walle, and
J. Gabarró Vallès, “Efficient Runtime Service Discovery and Consump-
tion with Hyperlinked RESTdesc,” in International Conference on Next
Generation Web Services Practices, 2011.

[21] R. Krummenacher, B. Norton, and A. Marte, “Towards Linked Open
Services and Processes,” in Future Internet Symposium, 2010.

[22] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, pp. 2787–2805, 2010.

[23] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet
of Things to the Web of Things: Resource-oriented Architecture and
Best Practices,” in Architecting the Internet of Things. Springer Berlin
Heidelberg, 2011, pp. 97–129.

[24] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The Web of Things:
interconnecting devices with high usability and performance,” in In-
ternational Conference on Embedded Software and Systems, 2009, pp.
323–330.

[25] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F.
Skarmeta, “Semantic Web of Things: an analysis of the application
semantics for the IoT moving towards the IoT convergence,” Web and
Grid Services, vol. 10, no. 2-3, pp. 244–272, 2014.

[26] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kröller, M. Pagel, M. Hauswirth, M. Karnstedt,
M. Leggieri, A. Passant, and R. Richardson, “SPITFIRE: Toward a
Semantic Web of Things,” Communications Magazine, vol. 49, no. 11,
pp. 40–48, 2011.

[27] K. Sahlmann and T. Schwotzer, “MOCAP: Towards the Semantic Web
of Things,” in Posters and Demos at the International Conference on
Semantic Systems, 2015.

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/ldp/
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328//
http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328//
https://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/sparql11-overview/

	Introduction
	Motivation Scenario
	Design Requirements and Preliminaries
	Realising Decentralised WoT Applications
	A Smart Components-based Architecture for Things
	Implementation

	Evaluation
	Conformity to the Design Requirements
	Evaluation Scenario and Internal Resources
	Deployment and Adaptability of Decentralised Logic
	Deployment and Adaptability of Interfaces and Interaction
	Re-Adaptation of the Application to new Requirements
	Performance Measures

	Related Work
	Conclusion
	References

