Exposing Internet of Things Devices via REST
and Linked Data Interfaces

Tobias Kéfer, Sebastian Richard Bader, Lars Heling, Raphael Manke, and
Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology (KIT), Germany
{tobias.kaefer|sebastian.bader |harth}@kit.edu,
{lars.heling|raphael.manke}@student.kit.edu

Abstract. Web technologies are widely used open standards to inter-
connect devices on virtually any platform. The W3C’s Web of Things
effort wants to bring web technologies to the Internet of Things to ad-
dress interoperability challenges on the Internet of Things. In this paper,
we report on four independently developed implementations whose aim
was to expose Internet of Things devices via web technologies, more con-
cretely REST and Linked Data interfaces. While they were all developed
with the same goal in mind, and with technologies that promote unifor-
mity on the interfaces, the implementations still exhibit different schemas
and architectures with different communication patterns.

1 Introduction

In the last couple of years, developments of embedded devices have made net-
worked sensors and actuators from various vendors in various domains affordable.
The adoption and the deployment of such devices is considerable. To provide a
common term for such networked sensors and actuators, the term Internet of
Things (IoT) has been coined. To expose the IoT device data and functionality
on a network interface, the different vendors in different domains came up with
different ways of describing the data and interacting with the devices. This het-
erogeneity makes an integrated processing of data from various devices a hard
task: For example, manufacturing machine suppliers equip their machines with
numerous networked sensors and actuators. While the machines from the individ-
ual suppliers can be optimised, holistic optimisation over the whole shop floor
of a manufacturer is hindered because of interoperability problems. Similarly,
in smart home scenarios, there are solutions like ZigBee Light Link! (Philips
Hue?, Osram Lightify?), which give interoperability on a local scale in the light
domain. But this heterogeneity is a challenge when building applications that
make use of devices from different domains and vendors. This challenge needs

! http://www.zigbee.org/zigbee-for-developers/applicationstandards/
zigbee-light-1link/

2 http://www.meethue. com/

3 http://led.osram.de/led_de/lightify/lightify-produkte/index.jsp

http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-light-link/
http://www.meethue.com/
http://led.osram.de/led_de/lightify/lightify-produkte/index.jsp

2 Kafer, Bader, Heling, Manke, Harth

to get addressed, at latest for the Industrial Internet of Things (also known
as Industrie 4.0), where connections between heterogeneous systems of differ-
ent companies have to be built, which are driven first and foremost by business
partnerships and not common technology.

Before applications can be built that make use of IoT devices, the devices’
data has to be made accessible. In making the data accessible, one faces two
degrees of freedom:

1. How to interact with the device to obtain the data?
2. How to describe and represent the data?

We propose to use established Web technologies to build IoT systems, thus
embracing the W3C’s Web of Things effort (see also Section 2). Specifically, we
use HTTP (the Hypertext Transfer Protocol), an implementation of the REST
(representational state transfer) architectural style, for the interaction and RDF
(the Resource Description Framework), a data model for representing the data.
This combination is also called Linked Data. Although we take those decisions
upfront, the technologies HT'TP and RDF still present us with choices for both
degrees of freedom even for 1.

Before the advent of the IoT, the proliferation of mobile devices gave rise
to cloud applications that expose RESTful APIs (Application Programming In-
terface) for mobile apps, which mainly consume data. The architecture of such
cloud applications are characterised by a central server, on which all users’ data
is maintained. Such centralisation of data brought privacy issues and led to data
silos with a proprietary data model, where it is hard to get data out. This ar-
chitecture with a central server is also a way to connect IoT devices. While in
the mobile apps scenario, the distributed and power-limited device is mainly the
consumer of data, on the IoT, the opposite is true: We have highly distributed,
unreliable and power-limited devices to whose data access is to be organised.

In this paper, we want to present two approaches to get data and function-
ality from sensors and actuators accessible using web technologies such they can
get integrated in applications. In our case, those applications are research pro-
totypes that consume data from Linked Data interfaces. The paper is a report
on four independently developed implementations, two for each approach, that
we carried out from scratch to provide Linked Data access to our IoT devices.
The paper is structured as follows: In Section 2, we give basic definitions and
introductions to the technical terms we use in the remainder of the paper. In
Section 3, we describe four implementations to get sensors and actuators into
the Internet of Things. Last (Section 4), we summarise and conclude.

2 Preliminaries

The Internet of Things is under active development, with many standardisa-
tion organisations (e.g. the ISO/IEC Internet of Things working group) and
industry-led consortia (e.g. the AllSeen Alliance?, the IPSO Alliance®, the Open

4 http://allseenalliance.org/
® http://www.ipso-alliance.org/

http://allseenalliance.org/
http://www.ipso-alliance.org/

Exposing Internet of Things Devices via REST and Linked Data Interfaces 3

Interconnect Consortium®, the Open Connectivity Foundation”, combining the
two former organisations, and the Industrial Internet Consortium®) that work
on creating and establishing dedicated IoT standards. Given that these efforts
are rather young and their standardisation efforts in constant flux, we do not
attempt to provide a survey of the different approaches. Rather, we embrace the
W3C’s effort around the “Web of Things”?, assuming the Internet of Things
is going to be using established web technologies such as URIs and HTTP. We
therefore share the aim and the base technologies with the Web of Things ef-
fort, despite our research focus is different from the standardisation work of the
Web of Things group. While the Web of Things effort is concerned a lot with
descriptions of offerings and capabilities of things that may have Linked Data
interfaces, we assume Linked Data interfaces and are concerned with the seman-
tic data provided by the thing, the interaction with the thing and the execution
of programs that employ the thing. On the other hand, we note that there are
other less widely deployed web standards such as WebSockets, which can also
be used to connect IoT devices [11], which are also recognised by the Web of
Things effort.

The web can be described as a system that implements the architectural
style of Representational State Transfer (REST) [9]. We use the terminology
introduced in [9] to describe and contrast the different approaches in this paper
for accessing IoT devices as part of applications. Broadly speaking, applications
following the RESTful architectural style consist of data, connectors and com-
ponents. In the remainder of the section, we address each in turn, starting with
data.

In RESTful architectures, the central notion is that of a “resource”; a resource
is any identifiable and referenceable thing in the context of an application. To
reference resources, they need names. On the web, Uniform Resource Identifiers
(URIs) [1] serve as names for resources. In our examples, we use URI templates
as specified in [10]. A resource has a state that may change over time. To ac-
cess and transfer the state of resources between components, we need a way to
represent this state. Those resource representations need to include references
to resources to allow for linking and discovering previously unknown resources
in decentralised networked environments such as the web or the Web of Things.

All of the presented approaches use the Resource Description Framework!©
(RDF) to represent the state of resources. RDF consists of subject-predicate-
object triples. A set of such triples forms a RDF graph. A RDF document is
a document that encodes a RDF graph. In a triple, the subject is a resource
identifier, which can be a URI, or a blank node, which is a document-scoped
local identifier. The URI-identified predicate defines the type of the relation
between the subject and the object. In object position of a triple, there can be

5 http://openinterconnect.org/

" http://openconnectivity.org/

8 http://www.iiconsortium.org/

9 http://www.w3.org/Submission/wot-model/
10 http://www.w3.org/TR/rdf11-concepts/

http://openinterconnect.org/
http://openconnectivity.org/
http://www.iiconsortium.org/
http://www.w3.org/Submission/wot-model/
http://www.w3.org/TR/rdf11-concepts/

4 Kafer, Bader, Heling, Manke, Harth

either a URI, or a blank node, or a Literal, which are used for values such as
strings or numbers.

Connectors are concerned with the transfer of representations of state of
resources between components [9]. Connectors provide, in other words, the means
for communication. REST defines the following connectors: client, server, cache,
resolver, tunnel. From this list, only the two first are relevant in the scope of
this paper.

We use the Hypertext Transfer Protocol (HTTP) [8] as our communication
protocol. An interaction between components in HTTP consist of a request-
response pair of messages. A HTTP client connector starts the communication
by sending a request to a specified server connector which in turn answers with
the response message. Depending on the type of request, the message includes
a body. HTTP offers several different types of requests, distinguished by their
method: Most common are GET for retrieving a resource state representation,
PUT for creating a resource or overwriting its state representation and DELETE
to delete a resource. Then, there is POST, which can be used to append to
a collection of resources, or to invoke a data processing task on the server.
Therefore, to provide an interface to an actuator, the PUT request can be used
in the following fashion: if we are to allow change to the statoe of an actuator
using a PUT request, then the payload of the PUT request contains a description
of the desired resource state. This description of the desired state can be derived
by first retrieving a description of the current state using a GET request, and
then modifying this description to reflect the desired state.

In REST, a connector to send or answer requests resides on a so-called com-
ponent. Among intermediaries (see Section 3.2), there are user agents (the client
program initiating a request to a resource) and origin servers (the source of au-
thoritative information on the resource). The terms client and server are only
concerned with the roles in an exchange of one request-response pair, as one
component may act as client in one exchange and as server in a different ex-
change. The decision of the components mainly acts as server and which mainly
act as clients, is for the designers of the application to decide. For our imple-
mentations, we started out from scratch and different circumstances made us go
different routes, which we describe in Section 3.

The Linked Data principles [2] are a set of practices to publish data on
the web, which make use of the combination of RDF and HTTP: To allow for
data retrieval of resources, the first two principles suggest to use HI'TP URIs to
identify things. The third principle recommends to use standard-conforming data
representations such as RDF. To allow for the discovery of new information, the
fourth principle advocates to include links in the representation to other relevant
data.

While the Linked Data principles are about data publishing, the interaction
with web resources that are described in RDF was not in their scope. The W3C’s
Linked Data Platform (LDP)!! specification closes the gap between the HTTP
and the RDF specification for the RESTful interaction with web resources. The

" http://www.w3.org/TR/1dp/

http://www.w3.org/TR/ldp/

Exposing Internet of Things Devices via REST and Linked Data Interfaces 5

recommendation defines Linked Data Platform Resources and Linked Data Plat-
form Containers. A LDP Resource guarantees a minimal set of common read
operations and specifies how servers publishing such resources need to react to
HTTP requests targeting the resource. LDP containers are collection LDP Re-
sources with additional functionalities for creating new resources.

3 Approaches and Implementations

We implemented two different approaches: The first two implementations di-
rectly connect the devices with sensors/actuators to the web. The second two
implementations use an intermediary. All approaches expose the information in
the form of web resources. We describe the approaches and implementations in
this section. We cover in detail the involved components and their interaction.
We also name the vocabularies that are used for describing the data for each
implementation, but omit the detailed presentation of the RDF data, as this is
not in the focus of the paper. Yet, we provide links to the source code of each
implementation for the interested reader.

3.1 Direct Access to the Device with the Sensor/Actuator

In this section, we present two implementations that implement the REST com-
ponent type “origin server”, i.e. there is direct access to the definitive source
of information about the resources. The origin server thus implements a REST
“server connector”.

Connecting two Modules of a Tessel 2 In this section, we describe how we
built a REST and Linked Data interface for the Tessel2'2. The corresponding
code can be found online'3. Tessel2 is a PCB (Printed Circuit Board) that has
been developed to easily build networked sensor/actuator devices. The board
comes with USB, Ethernet and Wi-Fi connection and two sockets for propri-
etary sensor and actuator modules. The PCB runs Node.js'* such that one can
program the PCB in JavaScript. The modules come with corresponding libraries.
We use a Tessel2 PCB with the ambient module, which includes sensors for light
and sound, and the relay module, which includes two relays to switch 240V at
5A, see Figure 1.

On the HTTP interface, we describe the board with its two sensors using
the LDP vocabulary. The root resource thus points to two resources describing
the modules using the 1dp:contains property. The ambient module points to
the resources for the sensors in the same manner. The sensors are described
as observation from the data cube vocabulary!®. The sensor readings are con-
nected to the sensor using a custom property. The relay module also uses the

12 http://tessel.io/

13 http://github. com/kaefer3000/t2-rest-relay-ambient
' http://nodejs.org/

'S http://purl.org/linked-data/cube#

http://tessel.io/
http://github.com/kaefer3000/t2-rest-relay-ambient
http://nodejs.org/
http://purl.org/linked-data/cube#

6 Kafer, Bader, Heling, Manke, Harth

Fig. 1. Component Diagram of the Implementation using the Tessel 2.

Tessel2
Ambient Module E
\ Express {] @
HTTP
Relay Module E / (GET/PUT)

User Agent

1dp:contains property to point to its relays. The relay’s state (on/off) is also
connected to the relay itself using a custom property. Using a PUT request on
the relay’s URI, the relay can be switched on and off.

Table 1. API Description of the Implementation for the Tessel 2.

URI Template Method Description

/ GET Returns an overview over the available modules.

/ambient/ GET Returns an overview over the available sensors of the
ambient module.

/ambient/{sensor} GET Requests a reading from the sensor, i.e. light or
sound, and returns it.

/relay/ GET Returns an overview over the available power
switches.

/relay/{n} GET Returns the status for the n-th power switch.

/relay/{n} PUT Sets the status for the n-th power switch.

We implemented the HTTP interface using the Express framework!® for
building Web APIs in JavaScript. We use the RDF serialisation JSON-LD as
way to represent the data.

Connecting a SenseHat In this section, we describe how we built a REST
and Linked Data interface to interact with a Sense Hat!'”, an add-on board for
the Raspberry Pi'®) a single-PCB computer. The Sense Hat board offers sev-
eral sensors (humidity, gyroscope, accelerometer, magnetometer, temperature,
barometric pressure), and a programmable LED matrix. The code can be found
online!?.

To describe the data on the interface, we use parts of the popular SSN on-

tology. The SSN (Semantic Sensor Network) ontology from the W3C’s Semantic

16 http://expressjs.com/

7 http://www.raspberrypi.org/products/sense-hat/
8 http://www.raspberrypi.org/

19 http://git.scc.kit.edu/ujdpo/sensehat

/
/ambient/
/ambient/{sensor}
/relay/
/relay/{n}
/relay/{n}
http://expressjs.com/
http://www.raspberrypi.org/products/sense-hat/
http://www.raspberrypi.org/
http://git.scc.kit.edu/ujdpo/sensehat

Exposing Internet of Things Devices via REST and Linked Data Interfaces 7

Sensor Network Incubator Group?® proved not to be specific enough. The SSN
ontology describes the way several devices with several sensors work together. A
way to specifically describe one device is not part of the SSN ontology, nor how
the data of a sensing device can be structured. Therefore, we built a vocabulary
ourselves by extending the SSN ontology by the class LedMatrix. Each sensor
on the Sense HAT board is an instance of the SSN class SensingDevice, and the
LED matrix of LedMatrix. A SensingDevice is connected to the quantity kind
(such as humidity and temperature) it observes using the featureOfInterest
property. On top of that a SensingDevice is connected to the RDF literal rep-
resenting the measured value using the observationValue property and to the
URI representing the corresponding unit using the observationUnit property.
Those descriptions can make use e.g. of dbpedia?! or the QUDT ontology?2.
For an instances of the LedMatrix class, the number of LEDs (instances of the
class SingleLed) in X and Y direction can be given. Using the hasLed prop-
erty, the connection between a SingleLed and a LedMatrix can be stated. For
each Singleled, the X and Y coordinate can be given using the x-coordinate
property and the respective property for the Y direction. The colour of each
SingleLed can be defined using three properties, which define the values in a
range between 0 and 255. The property for red is red-color and there are anal-
ogous properties for blue and green. We serve dereferencable URLs for the data
about the Sense Hat as described in Table 2.

Table 2. API Description of the Implementation for the SenseHat.

URI Template Method Description

/ GET Returns information on the Raspberry Pi linking to
the installed boards, e.g. the Sense Hat.

/sensehat/ GET Returns information on the Sense Hat linking to the
sensors and the LED matrix.

/sensehat/led/ GET Returns information on the LED matrix linking to

the individual LEDs. Additionally, it returns all
LEDs’ current value.

/sensehat/led/ PUT Overwrites the invormation on the LED matrix. Can
be used to set the values of the LEDs.

/sensehat/led/{x}/{y} GET Returns the colour of the LED at (z,y) on the LED
matrix.

/sensehat/{sensor} GET Returns the value of a sensor.

We implemented the interface to the Sense Hat of the Raspberry Pi in
Python. The Sense HAT python library?® allowed to program access to the

20 http://www.w3.org/2005/Incubator/ssn/
2! http://dbpedia.org/

22 http://www.qudt.org/

23 nttp://pythonhosted.org/sense—hat/

/
/sensehat/
/sensehat/led/
/sensehat/led/
/sensehat/led/{x}/{y}
/sensehat/{sensor}
http://www.w3.org/2005/Incubator/ssn/
http://dbpedia.org/
http://www.qudt.org/
http://pythonhosted.org/sense-hat/

8 Kafer, Bader, Heling, Manke, Harth

sensors of the Sense Hat and the LED matrix. We used the framework Flask?*
to implement the interaction with the resources. The library RDFlib?® served
in the serialisation and deserialisation of RDF data. Upon a request to a URI
on the REST interface, the corresponding data is retrieved from the Sense Hat,
described in RDF and then sent as a response.

Fig.2. Component Diagram of the Implementation using the SenseHat.

Raspberry Pi
Flask {I @
HTTP
(GET/PUT)
Sense HAT
Sense HAT {] Python Library User Agent

Some extra focus must be taken on the way the LEDs can be changed as
several LEDs are addressed in the same request. But as the single LEDs do not
have an unique identifier, the only available method is to specify them by their
x and y coordinate of the matrix. Two triples, one for the x-axis and one for the
y-axis, define each LED respectively. On subject position of the triples one can
use blank nodes. The following triples contain the thereby specified blank nodes
as subjects and determine the new behaviour of the corresponding LED.

3.2 Access via an Intermediary to the Device with the
Sensor/Actuator

In addition to the direct access to the information source we present two imple-
mentations that use an intermediary: There are two components: one component
that has a sensor/actuator connected (we call the sensor/actuator-bearer) and
a client connector. Then, there is another component, an intermediary, with
a server connector exposing a resource that represents the state of the sen-
sor/actuator connected to the other component. The state of this resource is
periodically updated by the first connector using PUT requests.

What is this Approach in REST? In REST terms, this pattern is hard
to grasp. One could argue that there is a resource on the first connector that
cannot get accessed directly, because the sensor/actuator-bearer has no server
connector, and that there is a logical correspondence between the not directly
accessible resource and the accessible resource on the second component. Next,
we discuss the origin server and the different intermediary component type REST
offers and why they do not fit the pattern:

2 http://flask.pocoo.org/
5 http://github.com/RDFLib

http://flask.pocoo.org/
http://github.com/RDFLib

Exposing Internet of Things Devices via REST and Linked Data Interfaces 9

Origin Server An orgin server is defined as “the program that can originate
authoritative responses for a given target resource” [8]. While our intermedi-
ary is the source for information on a given resource, the authoritative source
is the sensor/actuator-bearer. Moreover, the term origin server would fit for
the latter, because a characteristic of an origin server is to “be the ultimate
recipient of any request” [9]. But the sensor-bearer cannot be called origin
server, because it does not have a server connector, therefore, it cannot give
authoritative responses.

Proxy A proxy is defined as “a message-forwarding agent that is selected by the
client [...] to receive requests [...] and attempt to satisfy those requests via
translation through the HT'TP interface” [8]. While our intermediary is not
selected by the client, because the client does not know that the source of
the information is not the intermediary, our scenario looks like the example
proxy in [9, Fig. 5-10 c].

Gateway A gateway is defined as “intermediary that acts as an origin server for
the outbound connection but translates received requests and forwards them
inbound to another server or servers” [8] While in our case the intermediary
indeed acts as an origin server, it does not forward the request. On the
other hand, the encapsulation of other services is one of the examples of the
gateway, and it may communicate with other servers using any protocol [8].
Thus, the gateway could be regarded as the closest fit.

The Intermediary Strategy as a Way of Addressing IP-layer Issues
The approach with a central server is necessary e. g. in situations where the on-
going transition from IPv4 [13] to IPv6 [5] is solved using so-called DS-lite [7]
connections: In IPv4, every consumer gets one single an IPv4 address from his
Internet Service Provider (ISP), which is reachable from the Internet. For a cus-
tomer to nevertheless connect multiple devices to the internet, network address
translation (NAT) [14] is used: The customer employs a router, which gets the
one IPv4 from the ISP. The devices on the local network can connect to the
Internet by sending a request to the router, which replaces the local IP that ini-
tiates the connection with his own IP, and assigns a free port to the connection.
The router then forwards data that comes to this port from the Internet to the
local IP and port that initiated the connection. All computers in the local net-
work thus appear as one computer on the Internet. Connections initiated from
the Internet can only reach a local device if the router is configured to do port
forwarding: The router maintains a mapping from his own ports to a tuple of
local TP and port of local devices and forwards traffic accordingly.

As we go from IPv4 to IPv6, many ISPs employ a technique called Dual
Stack lite (DS-lite) [7]: Instead of giving both an IPv4 and IPv6 address to their
customers (Dual Stack [12]), ISPs only give IPv6 addresses to their customers.
If the customers request a connection to an IPv4 address on the Internet, the
ISPs tunnel the traffic accordingly. Conversely, this means that there cannot be a
IPv4 connection initiated from the Internet, because the customer does not have
an IPv4 address. This is particularly an issue for devices on cellular network,

10 Kafer, Bader, Heling, Manke, Harth

where typically only IPv4 is deployed. Moreover, if no further port forwarding is
employed, only connections to IPv6-enabled local devices can be initiated from
the Internet. However, not only the deployment of DS-lite is an argument for the
proposed architecture, but also the fact that it alleviates the necessity to have
access to the router with the necessary rights to configure the port forwarding.

Addressing Device Limitations using the Intermediary Strategy We
imagine two scenarios here:

— The continuous availability of the device is not guaranteed, but a high avail-
ability of the data is important. An off-the shelf caching intermediary for
HTTP would be sufficient here, though

— The intermediary can answer more complex requests on top of HT'TP based
on the same data. To have the data both on the device and the component,
which is proposed to be an intermediary, would be an unnecessary duplica-
tion of data.

Connecting Weather Sensors and a 433 MHz Transceiver In this sec-
tion, we describe how we built an REST and Linked Data interface to (a) the
functionality a 433 MHz transceiver provides (b) a directly connected temper-
ature sensor. The code can be found online?®. In our scenario, the transceiver
wirelessly controls two power sockets, and receives data from a weather station,
more concretely, temperature and humidity values. The transceiver is connected
to the GPIO pins of a Raspberry Pi. Moreover, there is another temperature
and humidity sensor directly connected to the GPIO pins of the Raspberry Pi.
In this implementation, the access to the client is implemented indirectly: The
Raspberry Pi exchanges data with a central server, which stores data about the
current state of the sensors and sockets. For the sockets, the data on the server
can also mean the desired state. One rationale for this approach is to alleviate
the necessity to directly access the clients to retrieve sensor data and control
actuators.

The implementation describes a sensor reading as Observation from the
SSN ontology. To describe the value, we use Wikidata?” and the Smart Appli-
ances Reference ontology?®. The location of the reading is described using the
WGS8429 ontology. The values are described using XSD data types®C.

The client periodically takes snapshots from the sensors directly connected to
the Raspberry Pi. Additionally, a 433Mhz transceiver is used to first, wirelessly
receive temperature and humidity values from a weather station sensor, and
second, wirelessly control two power sockets. The weather station sends the
current values for temperature and humidity every five minutes.

26 http://github.com/Lars-H/home-automation
2" http://www.wikidata.org/

28 http://ontology.tno.nl/saref .ttl

29 http://www.w3.org/2003/01/geo/ugs84_pos
30 nttp://www.w3.org/TR/xmlschema-2/

http://github.com/Lars-H/home-automation
http://www.wikidata.org/
http://ontology.tno.nl/saref.ttl
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.w3.org/TR/xmlschema-2/

Exposing Internet of Things Devices via REST and Linked Data Interfaces 11

All data from the sensors is enriched with meta data, sent to a server where
they get stored in a relational database. Moreover, there are records in the data
base for the sockets. The relational database is made accessible using a RESTful
API, which allows for requests to obtain and to store data. On the interface the
sensors and actuators are addressed using URIs. Sensor data can be requested
with a HTTP GET request on the corresponding URI and action for actuators
can be sent using HTTP POST request to the corresponding URI.

To implement the corresponding tasks, there are three parallel processes run-
ning on the Raspberry, two processes to handle the sensors and one for handling
the actuators:

Process 1 periodically requests the current value for temperature and humidity
from the connected sensor. It enriches the sensor data with meta data
and sends the data to the database server.

Process 2 is the (event-triggered) observer for the wireless connected sensor. Any
time a new data record is received from the sensor, it is also enriched
with meta data and sent to the server.

Process 3 periodically requests the current status from the database for the
actuators. In case the status changes, it will perform the corresponding
task and update the status on the database.

The database is a MySQL database which can be accessed using an HTTP
interface to store and retrieve data. The REST-interface is realised as a server
using the Flask Framework3! for building RESTful APIs in Python. A descrip-
tion of the API can be found in Table 3. The API supports content negotiation
for different RDF serialisations.

Fig.3. Component Diagram of the Implementation for the Weather Sensors and the
433 MHz Transceiver.
Weather Station {] Raspberry Pi

;Transceiver {]H Local Client EI__C
HTTP

(GET/POST)

Power Socket {]

Temp. & Humidity{
Power Socket E Sensor

HTTP
(GET/PUT)

Relational
Database Server
(Mysat)

il

User Agent

Connecting a SensorTag The goal of this approach is to publish various
outputs of a Texas Instruments SensorTag CC2650%2. The SensorTag delivers
sensors for temperature, humidity, acceleration, and light which can be accessed
via a Bluetooth Low Energy interface. The range of the bluetooth connection
limits the distance between the sensor itself and an according control unit where

3! http://flask.pocoo.org
32 http://www.ti.com/sensortag

http://flask.pocoo.org
http://www.ti.com/sensortag

12 Kafer, Bader, Heling, Manke, Harth

Table 3. API Description of the Implementation for the Weather Sensors and the
433 MHz Transceiver.

URI Template Method Description

/sensor/outside/{type} GET Returns the latest record of the sensor value
of type humidity or temperature for the wire-
lessly connected weather station.

/sensor/inside/{type} GET Returns the latest record of the sensor value of
type humidity or temperature for the directly
connected sensors.

/actuator/plug{n}/status GET Get the current status for the n-th wireless
power plug.

/actuator/plug{n}/status PUT Set the status for the n-th wireless power plug.

at the same time the positioning of the SensorTag should not depend on space
requirements of a powerful hardware. Further on, we want to query the real-time
observations while also be able to access the whole data for analytical tasks on
the historical data.

We use the Observation from the SSN ontology [4] to describe a sensor read-
ing, and describe the data using XML Schema datatypes, vCard33, and QUDT.
We connect the SensorTag to a Raspberry Pi Model B equipped with a Blue-
tooth 4.0 dongle. The Raspberry Pi is programmed to periodically request data
from the SensorTag using bluepy3*. Bluepy supplies JSON data. Another pro-
cess (“Administration Shell” in Industrie 4.0 terminology [6]) checks whether this
data from the SensorTag has changed and if so, the process lifts this sensor data
to RDF and represents it as an observation according to the SSN ontology [4],
XML Schema datatypes, and vCard. This administration shell sends the RDF
data to a collection resource on a Linked Data Platform implementation, more
precisely to a 1dp:BasicContainer. We use Apache Marmotta as an implemen-
tation of the Linked Data Platform, as it both offers a Linked Data interface
for RESTful interaction and a SPARQL interface for complex queries demanded
by our analytics use-case. Especially for the requirements of a profound analyt-
ical application, we assume the Raspberry Pi not powerful enough to store the
amount of data and do a sufficient query processing. That’s the reason why we
have the Apache Marmotta instance running on an Ubuntu 14.04 based virtual
machine, separating the data management from the data producer. The code

can be found online®®.

4 Discussion and Conclusion

We described four independently developed implementations of a REST and
Linked Data interface for IoT Devices. The interface is thus built on open stan-

33 http://www.w3.org/TR/vcard-rdf/
34 http://github.com/IanHarvey/bluepy
35 nttp://github. com/sebbader/KSRI-KM_STEP

/sensor/outside/{type}
/sensor/inside/{type}
/actuator/plug{n}/status
/actuator/plug{n}/status
http://www.w3.org/TR/vcard-rdf/
http://github.com/IanHarvey/bluepy
http://github.com/sebbader/KSRI-KM_STEP

Exposing Internet of Things Devices via REST and Linked Data Interfaces 13

Fig. 4. Component Diagram of the Implementation using the SensorTag.

Raspberry Pi
Administration {\ C
Shell e =4
€C2650 (posT) Linked Data Cloud (GET/POST)

JSON

[Tt e ©
GATT

Server

(Apache Marmotta) User Agent

Table 4. The Linked Data Platform API as implemented by Apache Marmotta.

URI Template Method Description

/marmotta GET Returns information and configuration options of the
Marmotta Platform

/marmotta/ldp GET Returns information about the root container

/marmotta/ldp/ldbc GET Responds with information on the used Linked Data

Platform Basic Container which serves as the central
access point in this implementation

/marmotta/ldp/ldbc POST Creates a new Linked Data resource
/marmotta/ldp/ldbc/{x} GET Returns information about the data object x
/marmotta/ldp/ldbc/{x} PUT Overwrites an existing resource or creates a new one

dards. We hid the technology fragmentation of the sensors and actuators behind
a uniform interface and data model. Despite this uniformity as aim of all imple-
mentations, we ended up with four implementations varying in vocabularies and
interaction direction with the device that bears the sensor/actuator.

In terms of interaction direction, the implementations can be categorised ac-
cording to whether there is direct access to the device with the sensor attached
or not. While the direct access would be the expected pattern in a RESTful
architecture, there are strong reasons why in some settings the access via an in-
termediary is reasonable. The intermediary again provides a uniform interaction
direction in all implementations.

The different implementations resulted in vocabulary heterogeneity, although
the use-cases are very similar. This is because while there are elaborate estab-
lished vocabularies to describe sensors and values, there are no established simple
constructs to describe properties of physical objects. Part of the W3C’s effort
of the Thing Descriptions3® is to come up with such constructs. They note that
already on the capability description level, ontologies do not much agree on ter-
minology [3]. In the meantime, the use of the semantic data model RDF allows
for employing reasoning techniques in the applications that interact with the
devices to integrate the data described using different vocabularies.

36 nttp://wuw.u3.org/WoT/IG/wiki/Thing_Description

/marmotta
/marmotta/ldp
/marmotta/ldp/ldbc
/marmotta/ldp/ldbc
/marmotta/ldp/ldbc/{x}
/marmotta/ldp/ldbc/{x}
http://www.w3.org/WoT/IG/wiki/Thing_Description

14

REFERENCES

Acknowledgements

This work is partially supported by AFAP, a BMBF Software Campus project
(FKZ 01IS12051), the BMBF ARVIDA project (FKZ 01IM13001G), and the
BMWi project STEP (FKZ 01MD16015B).

References

10.

11.

12.

13.

14.

Berners-Lee, T, Fielding, R, and Masinter, L: Uniform Resource Identifier (URI):
Generic Syntaz. RFC 3986 (INTERNET STANDARD). Updated by RFCs 6874,
7320. Internet Engineering Task Force (2005).

Berners-Lee, T: Design Issues — Linked Data, (2009). http: //www . w3 . org/
DesignIssues/ (visited on 09/16/2016)

Charpenay, V, Kéabisch, S, and Kosch, H: Introducing Thing Descriptions and
Interactions: An Ontology for the Web of Things. In: Proceedings of the 1st Work-
shop on SemanticWeb technologies for the Internet of Things (SWIT) at the 15th
International Semantic Web Conference (ISWC) (2016). in print

Compton, M: The SSN ontology of the W3C semantic sensor network incubator
group. Web Semantics: Science, Services and Agents on the World Wide Web 17
(2012)

Deering, S and Hinden, R: Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard). Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946,
7045, 7112. Internet Engineering Task Force (1998).

Dorst, W, ed.: Umsetzungsstrategie Industrie 4.0. Ergebnisbericht der Plattform
Industrie 4.0, Plattform Industrie 4.0. (2015). http://www.bitkom.org/Bitkom/
Publikationen/Publikation_5575.html

Durand, A, Droms, R, Woodyatt, J, and Lee, Y: Dual-Stack Lite Broadband De-
ployments Following IPvj Ezhaustion. RFC 6333 (Proposed Standard). Updated
by RFC 7335. Internet Engineering Task Force (2011).

Fielding, R and Reschke, J: Hypertext Transfer Protocol (HTTP/1.1): Message
Syntaz and Routing. RFC 7230 (Proposed Standard). Internet Engineering Task
Force (2014).

. Fielding, RT: Architectural styles and the design of network-based software archi-

tectures. Diss. University of California, Irvine (2000)

Gregorio, J, Fielding, R, Hadley, M, Nottingham, M, and Orchard, D: URI Tem-
plate. RFC 6570 (Proposed Standard). Internet Engineering Task Force (2012).
Merkle, N, Kdmpgen, B, and Zander, S: Self-Service Ambient Intelligence Using
Web of Things Technologies. In: Proceedings of the 1st Workshop on Semantic
Web Technologies for Mobile and Pervasive Environments (SEMPER) at the 13th
Extended Semantic Web Conference (ESWC) (2016)

Nordmark, E and Gilligan, R: Basic Transition Mechanisms for IPv6 Hosts and
Routers. RFC 4213 (Proposed Standard). Internet Engineering Task Force (2005).
Postel, J: Internet Protocol. RFC 791 (INTERNET STANDARD). Updated by
RFCs 1349, 2474, 6864. Internet Engineering Task Force (1981).

Srisuresh, P and Egevang, K: Traditional IP Network Address Translator (Tradi-
tional NAT). RFC 3022 (Informational). Internet Engineering Task Force (2001).

http://www.w3.org/DesignIssues/
http://www.w3.org/DesignIssues/
http://www.bitkom.org/Bitkom/Publikationen/Publikation_5575.html
http://www.bitkom.org/Bitkom/Publikationen/Publikation_5575.html

	Exposing Internet of Things Devices via REST and Linked Data Interfaces

