
Specifying and Executing Application Behaviour with

Condition-Request Rules∗

Andreas Harth Tobias Käfer

Institute AIFB

Karlsruhe Institute of Technology (KIT)

Germany

Abstract

The paper outlines a method for writing applications operating on components that are linked in a

decentralised fashion. Our aspiration is to simplify data integration and system interoperation at scale. In

projects we have routinely encountered obstacles for integration and interoperation due to architectural

mismatches along several dimensions: network protocol, data format and data semantics. We argue

for a uniform interface to components based on a combination of the Representational State Transfer

architectural style and the Linked Data principles, as only an uncluttered component interface allows

for a concise specification of application behaviour. To specify applications, we present the syntax of a

small language consisting of condition-request rules and sketch an operational semantics for the language

based on an agent architecture with a sense-act cycle.

1 Introduction

Modern software applications – think of virtual assistants, augmented reality applications or autonomous

systems – have to incorporate an increasingly diverse set of hardware and software components. Diversity

on the hardware level is due to the fact that the vendors of sensing and actuation devices favour competing

network protocols. On the software level, various components use different data formats for communication

(e.g., binary vs. XML vs. JSON). Even if all components use the same network protocol and the same

message syntax, the semantics of the messages can differ. Although known for decades, these problems

associated with heterogeneity in information systems still persist today. A consequence of the heterogeneity

of components is a high cost for building applications over networked components. Our goal is to reduce the

cost for building applications.

Wiederhold’s mediators in information systems [14] are a technical approach for resolving heterogeneity.

But mediators are costly to create and maintain. One way of reducing the integration cost per application

is to reuse mediators in multiple applications. Still, somebody has to create and maintain the mediators.

Also, to avoid an explosion in the number of required mediators, the mediators have to assume one single

target interface. A mediator approach works for brown-field projects, where existing components have to be

∗A preliminary version of this paper was presented at the Workshop on IoT Semantic/Hypermedia Interoperability, July
15-16, 2017 in Prague. Discussions and debates at the STI Summit, Sep 4-5, 2017 in Heraklion helped to shape the introduction.
We thank Carsten Bormann, elf Pavlik and Juan L Reutter for constructive comments and reviews.

1



adapted for interoperation. In green-field projects, a way of reducing the integration cost is to do without

mediators in the first place, which again requires agreement on uniform component interfaces.

Various strategies can be employed for deciding on the features of such a uniform interface. One strategy

is to use the union of the feature sets of the source interfaces; another strategy is to use the intersection of

the feature sets of the source interfaces; yet another strategy is to pick and choose among the feature sets.

However, as components can use sometimes inherently incompatible paradigms for accessing and manipulat-

ing component state, the decision on a uniform interface remains a challenge. In addition, the requirements

for interfaces are difficult to reconcile: interfaces should be simple and easy to use and implement, so that

applications can be built easily; yet at the same time, interfaces should be very flexible and feature-rich.

There is always a trade-off, and different people have different tastes and styles.

Our decision regarding uniform component interfaces is to rely on popular technologies around web

architecture, which has proven to work on a global scale. A tenet of web architecture are hyperlinks used for

decentralised publication and serendipitous browsing. But to allow for applications to browse, i.e., discover

new components at runtime, the components have to be self-described. Then, applications could follow

hyperlinks and use arbitrary data and functionality from hitherto unknown components. At least that is

the vision; the realisation of that vision has turned out to be challenging, not the least because developers

have to create applications that are able to operate on components with data semantics unknown at the

design-time of the application. Semantic technologies help to mitigate the problem by providing the means

for expressing mappings in a logic-based formalism. With such mappings, applications can transparently

integrate data with different schema.

The paper provides the following contributions:

• We present the architectural mismatches we have identified in our work on academic and industrial

data integration and system interoperation applications1,2. We describe mismatches concerning net-

work protocol, data format and data semantics that preclude applications from accessing data and

functionality of components in a uniform manner. To overcome the network protocol mismatch, we

assume a uniform addressing scheme (URIs3) and a uniform network protocol (HTTP4). To overcome

the data format mismatch, we assume uniform data format (RDF5) – in other words, Linked Data6

(Section 3). To overcome the semantics mismatch, we use logic formalisms to be able to formally

express the semantics of terms.

• We report on the difficulties we have encountered in bringing existing components to the uniform

Linked Data interface. Even with all components using the same interface, mismatches can occur that

hamper interoperation. The goal is to resolve mismatches independently of the application that is built

on top of networked components (Section 4).

• We introduce a method for specifying the behaviour of applications using rules in Notation3 syntax.

Notation3 is a superset of Turtle7, and extends the RDF data model with variables and graph quoting,

so that subject and object of triples can be entire graphs. The rule-based applications can access and

1http://www.arvida.de/en/, BMBF FKZ 01IM13001A and FKZ 01IM13001G
2http://www.ivision-project.eu/, EU FP7 GA #605550
3https://tools.ietf.org/html/rfc3986
4https://tools.ietf.org/html/rfc7230
5https://www.w3.org/TR/rdf11-concepts/
6https://www.w3.org/DesignIssues/LinkedData.html
7Because Turtle is defined in a W3C recommendation, and N3 is not, making definite statements about N3 syntax or

semantics is difficult.

2



Linked Data

Dynamic Logic

Automated
Composition

Workflow

Formal Verification

Figure 1: Technology layers for Linked Systems.

integrate resource state, follow links to discover new resources and change resource state to implement

application behaviour. Due to space constraints, we can only briefly introduce the rule-based language,

but we provide pointers to further material (Section 5).

While we keep an eye on elaborate functionality such as artificial intelligence planning, workflows and

model checking, which could be layered on top of a uniform Linked Data interface, the focus of our work

so far has been on the optimised execution of logic-based application behaviour specifications. Figure 1

illustrates the technology layers for Linked Systems [3] – methods and associated technologies operating on

Read-Write Linked Data – to enable scenarios surrounding virtual assistants, augmented reality applications

or autonomous systems in decentralised environments. In terms of the figure, this paper mainly belongs to

the “Linked Data” and “Dynamic Logic” layers.

Before we cover the contributions in Sections 3 to 5, we define some terms in Section 2. We cover future

topics in Section 6 and conclude with Section 7.

2 Terminology

We now define the core terms used in this paper, starting with Fielding’s definition of a component. “A

component is an abstract unit of software instructions and internal state that provides a transformation of

data via its interface.” [1]. An application consists of one or more components.

An agent is an application that acts in an environment. To be able to act in a networked environment

of components, we require the notion of a connector. “A connector is an abstract mechanism that medi-

ates communication, coordination, or cooperation among components.” [1]. Components can have a server

connector for handling incoming requests or a client connector for handling outgoing requests.

We use the term “server” to mean “component with an HTTP server connector”. We use the term

“user agent” to mean “component with an HTTP client connector that operates on behalf of a user in an

environment consisting of servers”.

3 Architectural Choices

We start with describing the dimensions of the choices for the system architecture and then we constrain

the dimensions, leading to Linked Data.

3



3.1 Towards Using Web Architecture for Applications

In our experience, the least contentious architectural choice in projects is to rely on internet protocols at

the transport layer. Internet protocols have been successfully deployed on a global scale, and the majority

of existing component with a network interface already rely on TCP; UDP is used to a lesser extent. Most

developers of networked applications today choose TCP without much deliberation. However, we think that

the abstraction that TCP and UDP provide – basically a channel where packets can be sent and received –

is too low-level, and requires a lot of complexity on the side of applications.

The concepts and technologies underlying the web, namely URIs and HTTP, provide a higher-level

abstraction. However, in our experience, the decision for URIs and HTTP for the uniform interface can be

contentious. Firstly, because HTTP precludes UDP, and secondly because of the strict separation between

user agent – components that can issue requests – and server – components that receive requests. Such a

separation is a big constraint. Protocols such as WebSocket allow for bidirectional communication (as, by the

way, do UDP and TCP); a similar functionality could be enabled in HTTP with “servients” – components

with both a server and a client connector. The question of whether a component should use a client or server

connector is related to the choice between pull-based and push-based communication [10]. Finally, one can

imagine completely different architectures (and some people do), for example, architectures building on a

centralised message bus.

Because our goal is a minimal language for writing applications that combine components, we require

big constraints on the component interfaces. In the following, we rule out a message bus architecture and

assume that the choice has been made for the resource abstraction with request/response communication

between user agents and servers. These constraints relate to RMM level 28, which roughly means that we

regard things as resources and identify the resources with URIs. Communication on RMM level 2 is done

using HTTP requests preferring HTTP methods that match the kind of communication act (e. g. reading

with GET and updating with PUT, instead of using POST for both). These constraints are thoroughly

understood and are well-documented [6, 1].

In particular, the resource and state manipulation abstractions behind URIs and HTTP provide con-

straints that limit the degree of freedom for providing and accessing component interfaces. The decision

for using web architecture goes a long way towards cost-effective interoperation, however, even within web

architecture, there are many degrees of freedom, which leads to mismatches concerning data format and data

semantics that still have to be addressed.

3.2 Dimensions

In the following, we list the dimensions on which one can make a choice regarding how the interface looks and

behaves. Remember that the goal is to reduce the many interface variations that make building applications

cumbersome.

• Network interface: assuming a REST-based protocol such as HTTP/1.1, HTTP/2 or COAP, the

choice is between supporting read, update, delete, create and observe operations. In addition, one

could assume a general query interface, as for example database mediator systems assume (albeit only

on read operations).

• Message semantics: we can either assume a simple retrieve operation (for GET) and overwrite oper-

ation (for PUT), which in each case the message body is the entire resource state. Other choices are

8http://martinfowler.com/articles/richardsonMaturityModel.html

4



transmitting patch instructions or arbitrary commands. Although it is conceivable to just send values

or objects in some syntax, we assume a more elaborate approach for encoding messages.

• Knowledge representation: assuming an RDF-based knowledge representation format, we could layer

ontology languages with progressively more expressive power on top, starting with RDFS, moving to

OWL LD and then to the more expressive OWL 2 profiles.

• Interface descriptions: starting with no dedicated interface descriptions and just assuming the HTTP

(or COAP) semantics for state manipulation, we could layer additional descriptions on top, starting

with the input (request message body) and output (response message body) messages, and adding

descriptions related to the resource state (precondition and effects). Finally, assuming query interfaces,

the interface descriptions could cover access restrictions related to the shape and structure of queries,

e.g., query variables that have to be bound.

The initial reaction is to go for the most expressive choice in the area (or areas) one is familiar with,

while not considering the areas one does not know about or care. For readers interested in approaches

that maximise the feature set along almost every dimension we recommend to consult the extensive work

on semantic web services. Again, the reason that we go for a minimal component interface is the ability

to specify application behaviour on distributed components in a simple and formally clean way based on

mathematical logic.

3.3 Constraints on the Dimensions

To reduce the effort for achieving integrated access to component state, we assume the following constraints

for the uniform interfaces to components:

1. Network interface: we assume a REST-based abstraction, where each component provides resources

that are identified via URIs. Components provide an HTTP server connector and allow for read (GET)

and write (PUT) operations on the provided resources using HTTP.

2. Message semantics: we assume information about the state of resources to be transferred in successful

GET and PUT requests.

3. Knowledge representation: we assume that the resource state is represented in RDF and support

RDFS and a small subset of OWL called OWL LD, which works well together with SPARQL, the

query language for RDF. We assume that the RDF documents provide hyperlinks to other resources.

In addition, we assume that there exists an index resource on each component as an entry point, and

that the index resource links to other resources on the same component.

4. Interface descriptions: we do not assume any interface descriptions, but simply require that the inter-

faces actually follow the HTTP semantics9. We briefly return to the question of interface descriptions

in Section 6.2.

In summary, for the uniform access to components, we assume an interface adhering to the Linked Data

principles. Due to the fact that Linked Data is read-only, that is, only supports HTTP GET, we extend

9https://tools.ietf.org/html/rfc7231

5



the interface to include write capabilities with HTTP PUT. Read-Write Linked Data10 and the Linked Data

Platform specification11 explain how to support full CRUD operations in conjunction with Linked Data.

Please note that the constraints are not minimal, that is, component providers are free to include support

for additional features, for example HTTP POST/DELETE, HTTP/2 server push or COAP observe, or

expressive OWL 2 knowledge representation. However, each additional feature of the server components

requires support on the side of user agents that also need to support the server features, which complicates

the development of user agents.

4 Resolving Mismatches

We now consider how to resolve mismatches that may occur when integrating different components. We

distinguish between protocol mismatches, syntax mismatches and semantic mismatches.

Some of the mismatches occur because the source components support features that go beyond our

minimal constraints. However, even if all source components stay within the set-out constraints, some

mismatches may occur.

4.1 Mapping Different Protocols

Because not all components implement the constrained interface, we require wrappers (a.k.a. shims, ad-

ministration shells, lifting/lowering specifications) to bring the components to the same interface. Next to

syntax and semantics of resource representations (covered in the following sections), we might need to map

fundamentally different networking protocol paradigms.

The constrained interface assumes an HTTP server connector, with the components being passive and

waiting for incoming requests. Some networking environments assume active components, i.e., components

that emit data at intervals, which would in the HTTP world require a client connector. To be able to include

those components in our system architecture, we require a wrapper that provides the current resource state

via GET on HTTP URIs (i.e., as server). That is, the wrapper has to receive the messages from an active

component and store the resource state internally, and make the resource state (passively) accessible via

GET on URIs. Analogously, changing resource state (via PUT, POST or DELETE) has to be converted to

the appropriate messaging format and then passed on to the final destination.

We have implemented such a protocol mapping between the Robot Operating System12 (ROS) message

bus and our Read-Write Linked Data interface abstraction [9]. The potential drawback is that polling is

out of sync with the arrival of events and that the application might, therefore, miss state changes. Also,

increased latency can occur due to a polling frequency that is out of sync with the update frequency.

4.2 Mapping Different Representation Syntax

Even if all components provide access to resources via an HTTP server connector, the representation of

resource state might still differ (for example, binary formats, CSV, TSV, JSON or XML). Hence, the wrapper

needs to lift the data model of the different components to a common data model. We assume the RDF

data model. Given that RDF can be serialised into different surface syntaxes, the wrappers can choose to

support different serialisations, for example RDF/XML, JSON-LD or Turtle.

10https://www.w3.org/DesignIssues/ReadWriteLinkedData.html
11https://www.w3.org/TR/ldp/
12http://www.ros.org/

6



4.3 Mapping Different Representation Semantics

Even if all sources use the RDF data model consisting of subject/predicate/object triples, data from different

providers might be structured and represented differently. We survey the different ways to represent data

even within the RDF data model in the following13.

4.3.1 Different Terminology

If the conceptual models (concerning the resources) of different vocabulary terms are similar, then different

terms can be easily mapped using RDF-based technologies. For example, the resource “Thing” of the Thing

Description (TD) ontology14 could be mapped to the resource “System” of the Semantic Sensor Network

(SSN) ontology15 using the following triple:

td:Thing rdfs:subClassOf ssn:System .

An RDF processor that knows about the RDFS semantics would then draw the right conclusions and

resolve the different terminology transparently for the user. Instead of using RDFS terms with associated

semantics, we could also assume a derivation rule encoded in Notation3 syntax16 to partially express the

“subclass” relation:

{ ?x rdf:type td:Thing . } => { ?x rdf:type ssn:System . } .

Intuitively17, the rule states that every instance of td:Thing is also an instance of ssn:System. Please

note that the rule only partially encodes the semantics of the “subclass” relation; missing is transitivity,

which we would have to encode in a separate derivation rule.

Mapping different terminology requires a similar conceptual view. We cover diverging conceptual views

in the following.

4.3.2 Different Modelling Granularity

Modelling granularity refers to the scope of resources. Consider two components that use the concept of a

city. Assume that one component uses a resource to identify the city of Berlin, whereas another component

uses a resource to identify the metropolitan region of Berlin. For some cases, it would be ok to equate the

city of Berlin with the metropolitan region of Berlin, while for other cases such a mapping would be wrong.

As the different components use different modelling granularity, one has to careful when mapping resources.

4.3.3 Different Assumptions about Aspect and Time

Another mismatch on the level of semantics is that of aspect, related to the linguistic distinction between

events and states. Messages could be represented as current state (for example, lat/long of the position of

a person), or using a higher-level event description (for example, stating that the person is walking from A

to B). Integration of aspect in state-based vs. event-based systems is an open challenge.

Yet another mismatch can occur if ontologies have been modelled based on different assumptions. For

example, an implicit assumption behind the SOSA (Sensor, Observation, Sample, and Actuator) ontology

13The examples assume prefix declarations as defined at http://prefix.cc/.
14https://w3c.github.io/wot-thing-description/
15https://w3c.github.io/sdw/ssn/
16https://www.w3.org/DesignIssues/Notation3.html
17For a quick introduction to derivation rules see http://n3.restdesc.org/.

7



(which is part of an updated version of SSN) is that users want to represent a journal of sensing and actuating

activities. SOSA includes a sosa:Observation and a sosa:Actuation class to represent results from past

observation and actuation events. Triggering observation or actuation events within a state manipulation

architecture such as RMM level 2 is not straightforward. The WoT TD ontology, on the other hand, has a

more immediate state-based view. For example, a temperature reading in TD could be done via accessing

the current state of a thermometer, whereas in SOSA an observation has to be triggered somehow (e.g., via

a service call), so that the value of the observation then can be read. State representations in TD include

the “writable” flag, which indicates whether a representation (such as the state of a switch) can be written.

In SOSA, actually carrying out actuation is outside the modelling (again, one could assume a service call of

some sort).

5 Applications Using Uniform Component Interfaces

We finally arrive at the topic of developing applications that require access to many different components.

We require uniform interfaces for two reasons: first, to be able to reuse components between applications

and thus drive the overall integration cost down; second, to be able to specify application behaviour over

different networked components using high-level executable specifications.

In the following, we first discuss how to access components using imperative programming languages,

and then outline the first step towards high-level descriptions of application behaviour with executable

specifications of simple reflex agents on Linked Data.

5.1 Writing Applications in Imperative Programming Languages

A uniform interface to components simplifies the development of applications in imperative programming

languages. Some people in our projects access the component state with code in imperative programming

languages, as they were not comfortable with specifying applications using rules.

When dealing with RDF messages within imperative programming languages, developers need to generate

and handle messages as objects (with static typing) in the programming language. To that end, validation of

incoming and outgoing messages for serialisation and deserialisation was not possible, due to the open world

assumption in RDFS and OWL. Hence, the developers augmented the existing vocabulary descriptions in

RDFS and OWL with descriptions in SHACL18 to specify request (input) and response (output) message

bodies. Based on the SHACL descriptions, the programmers could then validate messages and thus make sure

that the RDF messages contain all fields required for parsing into objects in typed programming languages

such as C/C++ or Java.

5.2 Writing Applications in a Rule-based Language

We now present an approach for specifying rule-based user agents operating on components via the uniform

interface (extending earlier work [12]). In the following, we present an application model following the

outlined constraints. We call an outgoing HTTP request an action, and an incoming HTTP request an

event. For each request/response pair, we say that a user agent emits the outgoing HTTP request (an

action), and a server receives the incoming HTTP request (an event) [3].

18https://www.w3.org/TR/shacl/

8



In terms of agent architectures, we assume simple reflex agents. Straightforward should be an extension

to model-based reflex agents that know about the semantics of HTTP operations.

We limit the number of active components per application to one, similar to a composition in web

services; the active component is an HTTP user agent that polls resource state and issues unsafe requests

where applicable. The requirement for one user agent per application could be relaxed but is useful in the

beginning to reduce complexity. Also, one could add a server connector to the controlling component in an

application. However, the same argument regarding reduced complexity applies.

Applications could be seen as simple reflex agents with behaviour specified in condition-request rules.

The applications are structured around a sense-act cycle:

• In the sense step, the interpreter acquires the current state of the relevant resources, including the

following of links to discover new resources and fetch their state. How to follow links is specified using

condition-request rules. Conditions are evaluated over the current resource state as known by the

interpreter (optionally taking into account the semantics of RDFS and OWL LD terms), and actions

are HTTP GET requests to fetch new data. Optionally, the interpreter can evaluate a query over the

integrated resource state at the end of the sense cycle.

• In the act step, the interpreter applies condition-request rules to decide on which unsafe requests

(requests that change the state of resources) should be carried out. Conditions are evaluated over the

current resource state as known by the interpreter; unsafe HTTP requests use the PUT method (later

POST, DELETE and PATCH) to manipulate resource state.

The interpreter could run user agents in two modes: first, in time-triggered mode, in which the sense-act

cycle runs at specified times; second, in event-triggered mode, in which the sense-act cycle runs whenever a

specified event (incoming request) has taken place. Given that the user agents only use a client connector,

they cannot receive events (which would require a server connector) and hence all our user agents currently

are time-triggered. We touch on an extension of the syntax and semantics of the rules that allows to take

into account incoming requests in Section 6.

5.3 Safe Requests and Link Following (Sense)

To have resource state available locally, a user agent application has to specify some initial resources that

form the basis for further processing. For example, the following two RDF triples encode an HTTP GET

request to an index resource of an IoT device.

[] http:mthd httpm:GET;

http:requestURI "http://raspi.example.org/index.ttl" .

We can also write rules that follow links. We use condition-request rules encoded in Notation3 syntax

with request templates using the HTTP vocabulary19 in the rule heads. The following rule specifies that

“next” links should be followed (for example, to fetch all data from a paged representation):

{ ?x :next ?next . } => { [] http:mthd httpm:GET ;

http:requestURI ?next . } .

19https://www.w3.org/TR/HTTP-in-RDF10/

9



Such rules allow for specifying that certain links to URIs should be followed. Please note that the

semantics of request rules is different to the semantics of derivation rules. With derivation rules, we assume

that the graph pattern in the rule head is used to create new triples that are added to the knowledge base.

With request rules, we assume that the request template in the rule head is used to create new HTTP

requests that are executed, yielding HTTP responses with a response body that is parsed and added to the

knowledge base.

URI templates are another way to specify links. Assume a service that returns triples with nearby

locations, given the URI, latitude and longitude of a location. We can write the following request rule:

{

?x :latitude ?lat ; :longitude ?long .

} => {

[] http:mthd httpm:GET ;

http:requestURI "http://geo.example.org/nearby?la={lat}&lo={long}&resource={x}" .

} .

The rule instructs the interpreter to access the service for each location (with latitude and longitude) in the

dataset. Such request rules with URI templates are a variant of Linked Data Service (LIDS) descriptions [11].

The evaluation of condition-request rules works as follows. The interpreter starts with carrying out the

initial requests. The combined resource state forms the basis over which the conditions in the condition-

request rules are evaluated. The interpreter applies these condition-request rules to exhaustion, that is, until

now new data (or requests) can be generated anymore and a fixpoint is reached.

After carrying out the GET requests (the sense part of a cycle), the local dataset contains all relevant

sources. We can optionally take into account the semantics of RDFS terms and a subset of OWL terms

encoded in derivation rules. We can also evaluate a SPARQL query on the local dataset containing the (more

or less) current resource state. Depending on the size of the data and response times of the components, we

can run tens of sense procedures per second.

5.4 Unsafe Requests (Act)

Based on the current resource state acquired in the sense procedure, we can specify rule that instruct a user

agent to issue unsafe requests. Thus, we allow for unsafe request templates in the head of rules:

{

?x :temperature ?temp .

?temp :greaterThan 20 .

} => {

[] http:mthd httpm:PUT ;

http:requestURI "http://raspi.example.org/r/heating" ;

http:body { <#id> :state :Off . } .

} .

The rule instructs the interpreter to switch off the heating in case the temperature is above 20. As our

immediate goal is to provide high-level executable specifications based on rules, we assume that people who

write rules know both the uniform interface to the components and the required payload and hence do not

need component descriptions.

10



The interpreter executes the unsafe requests in the act procedure only after the sense procedure has been

concluded. The rule application could be non-deterministic, as there could be multiple rules that overwrite

the state of the same resources. If one cannot get rid of non-determinism by changing the condition of the

relevant rules, different conflict resolution strategies could be applied.

In a sense, the structure of the input to server components is in the request template of the rules on

the user agent side. A description of the input parameters is in the rule body, the condition part, which

With enough applications specified using request rules, one could extract input descriptions for the server

components.

6 Future Directions

We now touch on future topics. We briefly sketch a model of computation for our architecture and finally

we discuss the relation between the reflex agents (condition-request rule-based user agents) and goal-based

agents.

6.1 Towards A Uniform Model of Computation

For a formal grounding for our rule-based user agent specifications, we seek a model of computation to

quantify the expressive power of our approach, and to formally align the application architecture with other

behaviour description works such as programming and workflow languages. In theoretical computer science,

the notion of Abstract State Machines [2] has been developed as a formal approach to specify semantics in

the context of computation. Abstract State Machines are defined using model theoretic structures, where

the interpretation of symbols changes over time governed by transitions given in rules. Hence, Abstract State

Machines is concerned with the dynamics of interpretations. In RDF model theory however, static structures

are in the focus, with elaborate semantic conditions on the interpretations. Currently, we are investigating the

combination of technologies in our architecture, namely of RDF, Linked Data, and condition-request rules on

the one side, with the theoretical foundation in Abstract State Machines on the other side, consists in network-

accessible data using elaborate knowledge representation with a Turing-complete model of computation.

6.2 The High Cost of Goal-based Agents

The specifications of user agent behaviour in rules could also be automatically generated, instead of getting

manually crafted. For instance, AI planning or techniques based on mathematical proofs make use of goal

specifications and elaborate Input/Output/Precondition/Effect (IOPE) descriptions20 of the components to

derive user agent behaviour.

In earlier versions of our prototypes, we have included descriptions of the input and output of services.

With LIDS [11], we described the required input parameters for GET requests (encoded in the URI), and

the graph shape of the outputs of the corresponding response. However, when specifying user agents that

operated on the components, we wrote rules that directly encoded the parameters in URI templates and did

not make use of the descriptions. The descriptions, because they were manually constructed and did not

serve a purpose (not even for generating documentation), soon became outdated, as developers changed the

API but did not put in the effort to also change the descriptions.

20https://scholar.google.com/scholar?hl=en&q=iope+descriptions

11



When starting with specifications that are immediately executable, the users can more quickly create

applications, without having to spend significant effort on creating descriptions. Descriptions could be

provided later. One can find very basic descriptions in the request rules: both safe and unsafe requests in

our examples contain descriptions – which parameters/payloads to supply – in the rule heads as part of the

request. A description of the parameters is in the rule body (the condition part). With enough applications

specifying request rules, one could extract descriptions from request rules.

Approaches such as RESTdesc [13] provide a way to encode component descriptions in N3 syntax, and, in

conjunction with a suitable reasoner and a goal description, can execute user agent behaviour. In the case of

RESTdesc, the user agent specification is an HTTP request to be executed immediately and a list of possible

HTTP requests that could be executed in the future. Superficially, RESTdesc rules and condition-request

rules look the same, given both are given in N3 syntax and use the HTTP vocabulary in the head of rules.

But they serve opposing purposes: while RESTdesc rules describe the potential behaviour of components,

the condition-request define the actual behaviour of user agents.

RESTdesc rules follow the form { precondition } => { request effect } ., where the precondition

states under what circumstances a user agent may want to issue the defined request that in turn leads

to the described effect. A more classical way to describe the behaviour of server components, closer to

IOPE, would be with rules in the form { precondition request } => { response effect } ., where

precondition and effect refer to the state of resources on the server, request refers to the incoming HTTP

request (an event), and response refers to the HTTP response the server issues. Such precondition/request-

response/effect rules would directly lead to executable specifications for server behaviour, analogous to how

the condition-request rules lead to executable specifications of user agent behaviour.

7 Conclusion

Data integration and system interoperation are complex problems. We believe that in order to solve at least

some of the problems, there have to be restrictions in place that – some would say severely – constrain

the interfaces of the components that should interoperate. The idea is to keep things simple. We have

presented a system architecture that provides integrated access to networked decentralised components fol-

lowing a constrained interface in conjunction with a rule-based condition-request language to access resource

state, integrate data and specify behaviour. We have applied the system architecture to geospatial data

integration [5] and industrial applications around product design and validation [8][7][4].

The presented system architecture unifies network protocol, knowledge representation and agent archi-

tectures. While each of the parts provide very powerful features, the synthesis requires a reduction of the

feature set of each part to keep the complexity of the combination manageable. Each additional feature

imposes a higher implementation effort. While there is nothing wrong with the vision of having goal-based,

utility-based learning agents that receive real-time push updates encoded in an expressive OWL2 profile from

components, our approach was to try to identify a minimally viable architecture that provides execution as

an immediate payoff. We believe that our architecture and rule language can represent a clean foundation,

on top of which more elaborate functionality can be layered, such as automated composition, workflows and

formal verification.

12



References

[1] R. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis,

2000. https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[2] Y. Gurevich. Abstract State Machines: An Overview of the Project. In Proceedings of the Third

International Symposium on Foundations of Information and Knowledge Systems, pages 6–13, 2004.

[3] A. Harth and T. Käfer. Towards specification and execution of Linked Systems. In Proceedings of the

28th GI-Workshop Grundlagen von Datenbanken (GvD), pages 62–67, 2016.

[4] A. Harth, T. Käfer, F. L. Keppmann, D. Rubinstein, R. Schubotz, and C. Vogelgesang. Flexible

industrielle VT-Anwendungen auf Basis von Webtechnologien. In VDE Kongress 2016, Internet der

Dinge, 2016.

[5] A. Harth, C. A. Knoblock, S. Stadtmüller, R. Studer, and P. A. Szekely. On-the-fly integration of static

and dynamic sources. In Proceedings of the Fourth International Workshop on Consuming Linked Data,

2013.

[6] I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume One. Recommendation, W3C,

Dec. 2004. http://www.w3.org/TR/webarch/.

[7] T. Käfer, A. Harth, and S. Mamessier. Towards declarative programming and querying in a distributed

Cyber-Physical System: The i-VISION case. In Proceedings of the 2nd International Workshop on

Modelling, Analysis, and Control of Complex CPS (CPSData) at the 9th CPS week, pages 1–6, 2016.

[8] F. L. Keppmann, T. Käfer, S. Stadtmüller, R. Schubotz, and A. Harth. Integrating highly dynamic

RESTful Linked Data APIs in a Virtual Reality environment (demo). In Proceedings of the 14th Inter-

national Symposium on Mixed and Augmented Reality (ISMAR), pages 347–348, 2014.

[9] F. L. Keppmann, M. Maleshkova, and A. Harth. Building rest apis for the robot operating system -

mapping concepts and interaction. In Proceedings of the Workshop on Services and Applications over

Linked APIs and Data, 2015.

[10] F. L. Keppmann, M. Maleshkova, and A. Harth. Towards optimising the data flow in distributed

applications. In Proceedings of the Workshop on Web APIs and RESTful Design (WS-REST), 2015.

[11] S. Speiser and A. Harth. Integrating Linked Data and services with Linked Data Services. In Proceedings

of 8th Extended Semantic Web Conference (ESWC), 2011.

[12] S. Stadtmüller, S. Speiser, A. Harth, and R. Studer. Data-fu: A language and an interpreter for

interaction with Read/Write Linked Data. In Proceedings of the 22nd International Conference on

World Wide Web (WWW), pages 1225–1236, 2013. Please note that we have renamed the system to

”Linked Data-Fu” to avoid name clashes with other projects.

[13] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van de Walle. Functional

descriptions as the bridge between hypermedia apis and the semantic web. In Proceedings of the Third

International Workshop on RESTful Design, pages 33–40, 2012.

[14] G. Wiederhold. Mediators in the architecture of future information systems. Computer, 25(3):38–49,

Mar. 1992.

13


