
DALI: A Decentralized, Agent-Based Approach for Adaptive
Manufacturing using Local Information

Sebastian Schmid
Friedrich-Alexander-Universität Erlangen-Nürnberg

Nuremberg, Germany
sebastian.schmid@fau.de

Andreas Harth
Friedrich-Alexander-Universität Erlangen-Nürnberg

Fraunhofer Institute for Integrated Circuits IIS
Nuremberg, Germany

andreas.harth@iis.fraunhofer.de

ABSTRACT

We study how decentralizedmulti-agent systems adapt on local data
in dynamic environments. In this extension of our earlier work, we
build on our original setting of a driverless transportation system
for a manufacturing scenario with Autonomous Guided Vehicles
(AGVs) to include not only disturbances but also perception and
communication errors that hinder the information sharing of agents.
We analyze how well the decentralized MAS can overcome and
correct these errors, where corrections come from, how the errors
impact the performance, and consider the communication efficiency
among the MAS population.

CCS CONCEPTS

•Computingmethodologies→ Self-organization; •Computer

systems organization→ Reliability.

KEYWORDS

Dynamic Environment, Autonomous Guided Vehicles, Multi-Agent
System, Self-Adaption, Intralogistics

ACM Reference Format:

Sebastian Schmid and Andreas Harth. 2024. DALI: A Decentralized, Agent-
Based Approach for Adaptive Manufacturing using Local Information. In ,.
ACM, New York, NY, USA, 13 pages.

1 INTRODUCTION

The crucial challenge of modern-day industry applications is to
ensure that production is high-performing but still highly dynamic.
Downtime shall be reduced to a minimum to maintain output, so
control systems are challenged to decide between adaptation and
task fulfillment. Manufacturing demands adaptability to external,
pre-given production goals that comprise individual, small batch
sizes and a dynamic environment that changes according to unfore-
seen influences, i.e. simple machine outage to pandemics [11, 40].

Especially in dynamic environments with unforeseen distur-
bances, centralized controlled systems (CC) optimize easily by de-
ciding on global data, kept in one place, to adapt on the spot [14].
Still, CCs are known to have disadvantages: storage and scalability
to process data with increasing load are limited, fixed links and
communication channels introduce vulnerabilities, and the single,
responsible node imposes the threat of a single point of failure

,
© 2024 Copyright is held by the authors. This work is based on an earlier work: SAC’24
Proceedings of the 2024 ACM Symposium on Applied Computing, Copyright 2024
ACM 979-8-4007-0243-3. http://dx.doi.org/10.1145/3605098.3635967

[14, 17]. While a CC approach is efficient where data is clean and
ubiquitous, manufacturing systems tend to get more complex and
struggle to provide with quality and availability of such data [3, 22].

On the other hand, decentralized and distributed multi-agent
systems (MAS) approaches are proposed for dynamic scenarios, as
they promise robustness due to graceful degradation and scalability
of problem solution by modifying the number of members [14, 16].
Existing MAS approaches already entered the dynamic domain
and try to implement decentralized control, e.g. based on auctions
[12], forecasting [25], negotiation [19], ant-colony intelligence [43],
reinforcement learning [46] or hybrid approaches like local coor-
dination and plan merging [1], but often centralized components
remain as part of the control and extensive data for decisions is
required. The question about the efficiency of agents that use exclu-
sively local information in dynamic manufacturing environments
is still open: to what extent can decentralized agents cope with the
demand of dynamic environments in industry?

In our original work for the Symposium on Applied Computing
2024 [36], we studied decentralized agents that act exclusively on
local information, perception, and communication (DALI) to answer
the question. We motivated our cause with an example of a shop
floor with a driverless transportation system (DTS), based on the
Tileworld scenario [31], where an unknown list of products have
to be transported to fitting workstations. In the original article, we
focused on the performance difference in solving the transporation
task by controlling AGVs on a dynamic shop floor either with a
CC or DALIs whose interactions are assumed to be functionally
correct. Here, we take a closer look at self-adaption capabilities of
DALIs in dynamic environments in the presence of errors in the
perception and communication of agents. Extending the existing
scenario of [36], agents may now suffer from the following errors:

• Perception error: we introduce a probability 𝑝𝑃 that dis-
torts an agent’s perception such that the agent perceives a
wrong station
• Communication error: we introduce a probability 𝑝𝐶 that
during communication the sent message is distorted to con-
tain wrong information for the receiving agent

Again, wemeasure the performance in comparison to an omniscient
CC as well as specifically the spread of erroneous information
among the population.

Consider our running example of a phone casing manufacturer
(Ex. 1.1). Several AGVs, controlled by DALIs, are tasked to transport
products on a shop floor to workstations that fulfill the products’
needs. To self-adapt to possible disturbances, agents share informa-
tion on the shop floor on a local level - but internal errors make
information especially sharing hard:

https://orcid.org/0000-0002-5836-3029
https://orcid.org/0000-0002-0702-510X

, Sebastian Schmid and Andreas Harth

Example 1.1. A new product, a phone casing enters the shop floor
at a source station at position (0,0). The product has a list of required
workstation skills attached and currently seeks a workstation with
"soldering" skills. AGV0 is nearby, controlled by DALI0, perceives the
phone casing, and starts the transportation process as the AGV was
idle before. After arriving at the source station and querying the list
for the next demanded skill, DALI0 is in trouble: as the product needs
a "soldering" station and DALI0 has no entry in its model, it needs
to quickly find out where to locate the station to reduce downtime.
DALI0 asks DALI1, in range, for information on a workstation with
soldering skills. Indeed, DALI1 has an up-to-date entry and returns
the position of workstation WS3 at (5,2). Unfortunately, during send-
ing an unnoticed error occurs and the received position at DALI0 is
(0,10) and marked as a correct and up-to-date entry - after all, DALI0
relies on DALI0’s observation hereon. Without further information or
possibilities to check, DALI0 will steer AGV0 to a position far away
from the product’s actual goal.

Taking possible disturbances into account, e.g. changes on the
workstation assignment, the incorrect information is not the only
hardship for DALI0, as WS3 might need service, and thus the skill
changes again. Observations in the agent population become out-
dated, too, thus, not only the information at hand is incorrect, but
agents need to dissipate potentially correcting data before. A hard
task for agents with limited perception and communication skills.

As with controlling a functioning population of AGVS, a CC
would adapt easily to perception and communication errors (assum-
ing that it is a random error occurring and not a permanent one,
e.g. a hardware error): by retrieving the information from the shop
floor directly, the CC queries all AGVs and stations periodically
and retrieves current data on subsequent percepts, if one before
was incorrect. By reissuing a new command, the system is again
on track. Considering the needed quality of information, the CC
needs various information in a sufficiently high frequency, ranging
from shop floor layout, position and pairing of AGV and product,
needed skill, the occurrence of the disturbance, and position of the
correct station, to a reliable and homogeneous network to interact
with all components.

We simulate our extended Tileworld scenario with unforeseen
disturbances for a fixed, unknown list of products that have trans-
portation tasks attached. We measure performance, communication
efficiency, and error correction with local observations of the over-
all DALI population and study how system’s performance suffers
by introducing errors in DALI’s perception and communication.
Our contributions are as follows:
• We use model-based DALIs with reactive behavior that adapt
to solve transportation tasks in a dynamic environment that
extends the Tileworld to a manufacturing scenario
• We evaluate the performance of DALIs in the presence of
perception and communication errors and analyze the prop-
agation of erroneous information across the population

The remainder of the paper is structured as follows: Sec. 2
gives an overview of related work from intelligent agents and self-
adaption systems in intralogistics. Sec. 3 shows briefly our approach
from [36] including a formalization and presentation of the imple-
mented algorithm for DALIs. Sec. 4 introduces the new models that
are used to simulate perception and communication errors as well

0 1 2 3

0

1

Y
X 4 5

2

3 7

0

Source

I need
"Soldering"!

CC

I can do
"Soldering"

WS3

0- product - AGV - workstation

Figure 1: CC perceives all components on the shop floor,

including products, workstations, and transporters (Ex. 1.1)

0 1 2 3

0

1

Y
X 4 5

2

3 7

0

Source

WS3

CC
<pickup, (0,0)>

0

0

<deliver, (5,2)>

I can do
"Soldering"

<deliver, (0,10)>

A

B

C
D

Figure 2: A: CC orders AGV0 to pick up the product at po-

sition (0,0). B: order to deliver to (5,3). C: CC perceives the

disturbance. D: new order to deliver to (0,10) (Ex. 1.1).

as measurements for performance, communication efficiency, and
error correction. Sec. 5 presents the experiments and results of the
introduced errors and their correction, while Sec. 6 discusses the
results in the context of the overall application. Sec. 7 concludes
with a summary and some outlook for future work.

2 RELATEDWORK AND BACKGROUND

2.1 Intelligent agents and model-based agents

Russell and Norvig [33] give structures for intelligent agents and
describe basic agent programs.We follow their description of model-
based agents (MBA) as agents that possess internal states, called
models, and memorize parts of their environment that they can-
not perceive at the moment. They may update the model as the
world evolves. MBAs decide according to a set of condition-action
rules with the help of the model’s information and their current
perception. The extension to a goal-based agent built on an MBA
is straightforward when goals are defined that describe situations
that are desirable for the agent. Goal-based agents can change their
behavior for given goals. e.g. for pathfinding to a given destination.

2.2 Self-adapting agents in intralogistics

Agent-based systems in transportation attracted much interest in
the past [45]. Proposals build e.g. on direct communication for lo-
cal cooperation [6] or team building [41], action interpretation for
cooperative cluster building [21], and range to applications in coop-
erative sorting in dynamic environments [37], control methods for
transport flow with pheromones [23] or swarm-based urban waste
collection with RFID tags [2]. Schmidt et al. [39] give an overview

DALI in Dynamic Adaptive Manufacturing ,

of approaches for decentralized intralogistics and state that multi-
agent-based approaches form the majority of research approaches
to implement decentralized control. Mechanisms include auctions
(e.g. for in-house [12] or B2B logistics [32]), agent negotiations (e.g.
[19]), or hybrid approaches like local coordination and plan merg-
ing [1]. Berndt [6] proposes a self-organizing supply system that,
comparable to our approach, builds on decentralization, but uses
direct communication and observations between agents to build
expectations to adapt to unforeseen events. In this approach, the
agents are bigger entities like consumers or manufacturers, linked
by their business relationships. Klein [25] discusses decentralized
strategies for dispatching, with a focus on disturbances in terms of
system size change and path errors to analyze robustness. Related
to our approach, but not the domain, are Lesser and Corkill [28]
who present the Distributed Vehicle Monitoring Testbed, where dis-
tributed nodes share knowledge and goals, and cooperate to solve a
single problem, the identification of vehicle trajectories, but stay sta-
tionary and do not further influence their environment. In contrast
to other approaches, we focus on the union of the exclusive use of
local communication, a dynamic environment that changes unpre-
dictably outside agents’ perception and disturbs agent’s knowledge,
minimal assumptions on the population and environment, and the
autonomy of agents for choosing between exploration, knowledge
exchange, and adaptation.

3 APPROACH AND REALIZATION

3.1 Assumptions for our approach

We approach our proposal of DALI with a simulation experiment
of a dynamic shop floor that is concerning [33]:

• partially observable (information might be missed),
• stochastic (environment’s state is not completely determined
by the current state and agents’ executed actions),
• dynamic (environment changes while agents deliberate), and
• discrete (in terms of time and states).

The task is to deliver products with an attached, ordered list of
demanded skills to workstations on the shop floor that match these
skills. We introduce periodic disturbances that swap the skills of
stations every 𝑡𝑑 cycles in the simulation. The DTS control system,
either CC or DALI, has to steer AGVs for pickup and delivery to
fulfill the task. We compare the performances for the time needed
to finish a pre-specified list of products that is secret to the control
system across different shop floor setups and disturbance times. We
make the following assumptions about onboard AGV equipment to
be used by DALI:

• Sensors to perceive nearby surroundings, including AGVs,
products, and workstations including their skill
• Communication devices to contact nearby AGVs
• Automatic collision avoidance
• Lamport clocks to denote the occurrence of events [26]

AGV equipment is only relevant for DALI as CC is assumed to be
omniscient and has no need to use it.

3.2 Formalization

We base our work on the MOSAIK model [10, 38], which in con-
trast focuses on self-organizing agents using their environment for
communication, and derive our formal definitions from [9, 29].

Definition 3.1 (DALI). Decentralized agents with local informa-
tion are proactive components (as opposed to artifacts) that decide
on their own. DALI implements a perception-thought-action cycle to
influence the environment, based on defined condition-action rules.
We define DALIs as the tuple 𝐴 = ⟨M, 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒, 𝑎𝑝𝑝𝑙𝑦, 𝑎𝑐𝑡⟩ with

M, the agent’s model and set of possible knowledge

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 : 𝐸′ ×M →M, perception based on the environment,

𝑎𝑝𝑝𝑙𝑦 :M →M, function for derivation rules,

𝑎𝑐𝑡 :M → 𝑂, function for condition-action rules,

with 𝑂, as set of operations with {⟨𝑝𝑖𝑐𝑘𝑢𝑝, 𝑝𝑜𝑠⟩,
⟨𝑑𝑒𝑙𝑖𝑣𝑒𝑟, 𝑝𝑜𝑠⟩, ⟨𝑒𝑥𝑝𝑙𝑜𝑟𝑒, 𝑝𝑜𝑠⟩, 𝑖𝑑𝑙𝑒,𝑂𝑐𝑜𝑚} where

𝑂𝑐𝑜𝑚 :M ×N →M, communication with neighbors N
where 𝐸′ is the set of all percepts and 𝐸 is the set of all environmental
states with 𝐸′ ⊂ 𝐸 (cf. Def. 3.2).

The modelM maps entries to observed 𝑠𝑘𝑖𝑙𝑙𝑠 with
• a position on the shop floor 𝐹 ,
• a Lamport time stamp when entries are created or updated,
• a Lamport time stamp when entries are invalidated,
• a curiosity value between [0, 1] that steers exploration.

Based on limited perception, perceive recognizes nearby surround-
ings, including neighboring AGVs (here used as N), products, and
workstations. apply revises the agent’s model based on derivation
rules, e.g. to determine outdated entries. act influences the agent’s
environment via operations 𝑂 , where the respective operations
order the AGV to go to a position to pick up or deliver a product,
move to a specific part of the shop floor for exploration, or to be idle.
𝑂𝑐𝑜𝑚 exchanges model entries with neighboring AGVs N . Each
DALI may submit operations for exactly one defined AGV.

Definition 3.2 (Artifact). Artifacts are reactive components
(as opposed to agents) that form the agents’ environment [9]. Arti-
facts provide different ways for interaction, e.g. to read a product’s
demanded skill or to order an AGV to move. An internal logic defines
the deterministic reaction to interactions, but artifacts do not act au-
tonomously. We define the environment as
𝐸𝑛𝑣 = ⟨𝐸, 𝑒0,𝑂, 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟,𝑢𝑝𝑑𝑎𝑡𝑒, 𝑒𝑣𝑜𝑙𝑣𝑒⟩ with

𝐸, the set of all possible environment states

𝑒0, the environment’s initial state

𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 : 𝐸 → 𝐸′, for agents to retrieve a percept E’ ⊂ E

𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑂 × 𝐸 → 𝐸, effectory function based on operations

𝑒𝑣𝑜𝑙𝑣𝑒 : 𝐸 → 𝐸, the environment’s development.

In our setting AGVs, workstations, and products are artifacts.
Artifact behavior is a black box for agents, but the behavior’s re-
sult is observable via environment state changes and the transfer
function. Environment state changes, e.g. movement on the shop
floor or performed work on products, may be triggered by agents
as well as the physical environment via disturbances, represented
by evolve. We treat the shop floor as a tiles lattice as in [31].

, Sebastian Schmid and Andreas Harth

3.3 Behavior of DALI

We simulated the experiment setup with GAMA 1, an agent-based
software platform. You may find our code in our online appendix2.

We present the algorithms for the perception, communication,
and cooperation of DALIs. We use examples from the perspective
of AGV0 from Ex. 1.1, now controlled by DALI0.

Perception. Alg. 1 aligns the modelM with the perceived envi-
ronment𝐷′ (cf. Def. 3.1, perceive). DALI uses the controlled AGV 𝑡 ’s
sensors to get a percept including the AGV’s state 𝑡 .𝑠𝑡𝑎𝑡𝑒 , position
𝑝𝑜𝑠 , and nearby stations. When DALI observes a station 𝑠 with a
skill 𝑠𝑘𝑖𝑙𝑙 , DALI checks whether the model already contains data. If
not, a new entry is created, with the current timestamp 𝜏𝑛𝑜𝑤 , 0 for
invalidation, and curiosity 𝑐 with 0.0 (l. 4). If the station is already
known, DALI updates its model (l. 6) and invalidates older entries
pointing to the same location (l. 12), as the observation reflects the
current state of the perceivable environment. If the AGV is not busy
with pickup or delivery, DALI starts to explore the shop floor to
bringM up to date and detect further disturbances (l. 9). Finally,
M is updated (l. 15).

Algorithm 1: Perception - perceive
Data: initalM,DALI’s controlled AGV 𝑡

Result: updatedM, 𝑡 .𝑠𝑡𝑎𝑡𝑒

1 M ← new percept from AGV 𝑡 ;
2 if AGV 𝑡 is next to station 𝑠 then
3 if skill NOT inM then

4 M ← new 𝑠𝑘𝑖𝑙𝑙 entry with 𝑠 .𝑝𝑜𝑠 and 𝜏𝑛𝑜𝑤 ;
5 else

6 𝑖𝑛𝑣 ← all entries inM pointing to 𝑠 .𝑝𝑜𝑠;
7 if |𝑖𝑛𝑣 | > 0 then
8 if 𝑡 .𝑠𝑡𝑎𝑡𝑒 NOT ”𝑑𝑒𝑙𝑖𝑣𝑒𝑟” ∨ ”𝑝𝑖𝑐𝑘𝑢𝑝” then
9 𝑡 .𝑠𝑡𝑎𝑡𝑒 ← ”𝑒𝑥𝑝𝑙𝑜𝑟𝑒”;

10 end

11 forall entries in inv do

12 invalidate and note timestamp inM;
13 end

14 end

15 M ← update 𝑠𝑘𝑖𝑙𝑙 entry with 𝑠 .𝑝𝑜𝑠 and 𝜏𝑛𝑜𝑤 ;
16 end

17 end

Example 3.1. Fig. 3 - AGV0 moves near workstation WS3 at (5,2)
with the skill "bolting". DALI D0 requests AGV0’s percept of the en-
vironment. D0 checks the modelM at "bolting" and notices that it
last perceived the "bolting" skill at (0,10). As skills are unique, D0
invalidates the entry. Also, the last time D0 perceived "soldering" was
at (5,2). D0 updates the entry such thatM(”𝑏𝑜𝑙𝑡𝑖𝑛𝑔”) now points to
(5,2). The position of the "soldering" skill is nevertheless unknown to
D0, as it cannot be certain where the disturbance happened.

1https://gama-platform.org/
2https://github.com/wintechis/dali-adaption

0 1 2 3

0

1

Y
X 4 5

2

3 7

0

Source

WS3

I need
"Soldering"!

"Bolting" == (0,10),
"Soldering" == (5,2),

"Bolting" == (5,2)

Perception
radius of AGV0

I can do
"Bolting"

Figure 3: DALI D0 perceives WS3 and identifies the exposed

skill "Bolting" to correct its internal model (see Ex. 3.1)

Communication. We model communication in Alg. 2 as an anti-
entropy approach of simple epidemics as 1-to-1 pull communication
[15]. Epidemic algorithms (EA) can eventually distribute knowledge
and help AGVs save power, as EA reduces the number of messages
between nodes, e.g. compared to broadcasts [35]. The initiating
DALI asks a random neighboring DALI for information on model
entries with skill and position (l. 1) and adds any new entries (l. 6).
Existing observations are updated depending on the timestamp if
the shared observation is more recent (l. 6) and otherwise ignored.
The process is monotonic as information is only added to the model.

Algorithm 2: Communication - act
Data:M, neighboring DALI 𝐷𝑁

Result: updatedM
1 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ← ask neighbor 𝐷𝑁 ;
2 forall entry on 𝑠𝑘𝑖𝑙𝑙 in 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 do

3 if 𝑠𝑘𝑖𝑙𝑙 NOT in modelM then

4 M ← new entry on 𝑠𝑘𝑖𝑙𝑙 as in 𝐷𝑁 ;
5 else

6 if 𝑠𝑘𝑖𝑙𝑙 inM but 𝐷𝑁 ’s entry is more recent then

7 M ← updated entry on 𝑠𝑘𝑖𝑙𝑙 as in 𝐷𝑁 ;
8 end

9 end

10 end

Example 3.2. Fig. 4 - AGV0 carries a phone casing that needs a
"soldering" skill. D0 has invalidated "soldering" at (5,2) before and
now searches for new information to fulfill the request. AGV0 passes
AGV7 and AGV8 at the same time. D0 evaluates the percept, chooses
randomly AGV8, and asks its DALI D8. D8 shares a current observation
for "soldering" at (0,10). D0 compares its model with D8’s answer and
replaces the invalidated entry. D0 concludes that phones casing’s
request for "soldering" can be fulfilled at (0,10). D0 orders AGV0 to
move to (0,10).

Curiosity and exploration. DALIs have to fulfill the transportation
task as fast as possible so DALIs have to detect disturbances quickly.
Instead of controlled forgetting [7] or commitment [24], DALIs
may decide to re-evaluate their model and deliberately move AGVs
to stations to check if disturbances happened, even if the AGV

https://gama-platform.org/
https://github.com/wintechis/dali-adaption

DALI in Dynamic Adaptive Manufacturing ,

0 1 2 3

0

1

Y
X 4 5

2

3

7 0

Source

WS3

"Bolting"

8

"Casting" == (6,12)

"Soldering" == (0,10)
"Casting" == (6,12)

"Bolting" == (5,2),
"Soldering" == ???

"Soldering" == (0,10)

"Soldering"

Figure 4: Searching "soldering", DALI D0 contacts neighbor-

ingAGVs, and receives an observation for "soldering" at (0,10).

D0 updates its model and sends AGV0 to (0,10) (see Ex. 3.2).

carries no product that justifies moving to the station - which
seems counter-intuitive as DALIs produce empty runs.

DALI’s so-called curiosity, Alg. 3, keeps a balance between com-
mitting to visit a station and being free enough for exploration.
During action selection (cf. Def. 3.1, act) the curiosity value acts as
the probability of entering a "explore" state to move to a station. If
an AGV is idle, DALI takes a random entry (l. 1) and increases the
curiosity for a visit to the known location (l. 2). When the station is
reached, the curiosity is satisfied and reset (l. 4). Without a target,
the AGV stays, until DALI’s curiosity motivates it to move the AGV
or a disturbance causes exploration (Alg. 4), coming from percep-
tion (Alg. 1) or communication (Alg. 2). The curiosity mechanism
also counters deadlocks as blocked stations with products may get
serendipitous visits from AGVs.

Algorithm 3: Curiosity - apply
Data:M, constant for curiostiy increase 𝑐𝑢𝑟
Result: curiosity ofM

1 𝑠𝑘𝑖𝑙𝑙 ← choose random entry fromM;
2 M(𝑠𝑘𝑖𝑙𝑙) .𝑐 ← increaseM(𝑠𝑘𝑖𝑙𝑙).𝑐 by constant 𝑐𝑢𝑟 ;
3 if 𝐴𝐺𝑉 t is next to station 𝑠 with skill then
4 M(𝑠𝑘𝑖𝑙𝑙) .𝑐 ← 0.0 ;
5 end

Example 3.3. Fig. 5 - As AGV0 is idle, DALI D0 increases its curios-
ity to visit (5,2) where it last perceived "soldering" and orders AGV0
to move to (5,2). D0 notices that "bolting" is now at (5,2) and updates
the model (see. Ex. 3.1). The curiosity is satisfied and D0 decides to
stay at (5,2). Over time, D0’s curiosity rises to visit (0,0). Unknown to
D0, a new phone casing waits at (0,0), outside any AGV’s perception.
As D0 ordered AGV0 to (0,0), D0 may discover the phone casing.

When DALI concludes that a disturbance happened, it suspends
the transportation task and explores the shop floor to correct the
model. When the model seems to be correct again (via exploration
or communication), the transportation task is resumed.

We base exploration (Alg. 4) on frontier-based exploration [44],
where DALIs save checked tiles and unexplored tiles. Initially, no
tiles are checked, and the current neighboring positions are the
unchecked floor tile frontiers. Checked tiles are saved, and new

0 1 2 3

0

1

Y
X 4 5

2

3

0

Source

WS3
"Soldering" == (5,2)

"Bolting"

0

"Bolting" == (5,2),
"Soldering" == (5,2)

Figure 5: DALI D0 gets curious about the WS at (5,2) and

moves AGV0 there. Here, D0 notices "bolting" at (5,2) and

updates the model. D0’s curiosity is satisfied (see Ex. 3.3).

perceived, unchecked tiles are added to the remaining ones. Two
exploring DALIs also exchange information about their explored
and unexplored areas. DALI chooses as best option a frontier from
its neighbors which borders most checked tiles (l. 2), or if no such
option exists, the closest frontier tile (l. 4) or a random neighbor (l.
7). The next target to check is then chosen from these best options
(l.9). We stress that we leave the option for the shop floor to change
completely, so DALIs make no fixed assumptions on the layout.

Algorithm 4: Exploration - apply
Data: 𝑐ℎ𝑒𝑐𝑘𝑒𝑑𝑇𝑖𝑙𝑒𝑠, 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑙𝑒𝑠

Result: 𝑡𝑎𝑟𝑔𝑒𝑡 for AGV
1 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 ← closest neighboring frontier tiles;
2 𝑏𝑒𝑠𝑡𝑂𝑝 ← tiles that border most checked tiles;
3 if 𝑏𝑒𝑠𝑡𝑂𝑝 = ∅ then
4 𝑏𝑒𝑠𝑡𝑂𝑝 ← closest frontier tiles in general ;
5 end

6 if 𝑏𝑒𝑠𝑡𝑂𝑝 = ∅ then
7 𝑏𝑒𝑠𝑡𝑂𝑝 ← any neighboring tiles;
8 end

9 𝑡𝑎𝑟𝑔𝑒𝑡 ← choose randomly from 𝑏𝑒𝑠𝑡𝑂𝑝;

Example 3.4. Fig. 6 - AGV0 at (5,3), DALI D0 explores the shop
floor to find a station with "soldering" skill, to fulfill phone casing’s
request. D0 already checked parts of the shop floor and now moves
AGV0 to (6,8), the nearest frontier. On its way, AGV0 meets AGV1,
another AGV exploring "soldering", controlled by DALI D1. D0 and
D1 exchange information about their explored areas. D1 shares that it
already explored (6,8), but does not know where "soldering" is, so D0
adds (6,8) to its explored area. D0 concludes that (6,8) does not need
to be checked anymore and instead moves AGV0 to frontier (7,7). On
the way, AGV0 meets AGV8, controlled by D8. D0 and D8 exchange
information (cf. Ex. 3.2), where D0 learns about "soldering" at (0,10).
D0 ends the exploration and moves AGV0 directly to (0,10).

4 ERROR AND MEASUREMENTS

We extended our study by introducing two new variations of er-
ror types and study how agents can correct and adapt to these
additional disturbances. Besides the dynamics of the environment,

, Sebastian Schmid and Andreas Harth

5 7 9 11

5

Y
X 13 15

0
1

6 8 10 12 14

6

4

3

2

"Soldering" == ???
"Soldering" ≠ {(11,5),

(6,8),(13,8),...}

"Soldering" == ???
"Soldering" ≠ {(5,3),

(5,4),...} ∪ {(6,8)}

explored region frontier unexplored region

Figure 6: DALI D0 looks for "soldering" and has already ex-

plored parts of the shop floor (green). On meeting D1, D0

learns that D1 already checked (6,8), but knows nothing about

"soldering". D0 concludes that visiting (6,8) is useless and se-

lects another frontier target. (see Ex. 3.4)

agents also have to take their own errors into account that ex-
tend to both senses agents use to receive knowledge about their
environment: their perception and communication capabilities.

Note that we use global information for the manipulation: we
choose data from the setup of the environment to insert in the
agent without its knowledge, thus the agent is unaware of the
manipulation and the global information used - the agent has still
only access to its model for its decision making. The only way for
the agent to correct its wrong model is then either by exploring
and finding out the truth fast enough, or receiving a correct update
via communication. For both, however, the probability exists again
to be distorted via our manipulations.

4.1 Perception error

DALIs have a limited perception which is a cornerstone of their
purely decentralized and distributed nature. At the same time, we
already saw that a limited perception entails other, more serious
issues, that is, the necessity for exploration. In our initial study,
we saw that exploration makes up a non-negligible part of their
overhead in performance when compared to a CC.

Here, we manipulate an agent’s perception before a perceived
fact may be applied to the model. With relation to Alg. 1, we in-
troduce the probability 𝑝𝑒𝑟𝑟 that is evaluated after receiving the
percept from the AGV (the manipulation is marked):

Algorithm 5:Manipulated perception (excerpt)
1 percept 𝑃 ← new percept from AGV 𝑡 ;
2 if 𝑓 𝑙𝑖𝑝 (𝑝𝑒𝑟𝑟) then
3 𝑃 .𝑠.𝑠𝑘𝑖𝑙𝑙 ← 𝑠′ .𝑠𝑘𝑖𝑙𝑙 with 𝑠′ ∈ 𝑆 |𝑠′ ≠ 𝑠;
4 end

5 M ← 𝑃 ;
6 if AGV 𝑡 is next to station 𝑠 then
7 . . .
8 end

With probability 𝑝𝑒𝑟𝑟 , we replace the received percept with the
skill of some other station. The manipulation is thus equal to a
misinterpretation of the environment, e.g. represented by a false

0 1 2 3

0

1

Y
X 4 5

2

3

0

Source

WS3

"Bolting" == (0,10),
"Soldering" == (5,2),

"Casting" == (5,2)

I can do
"Bolting"

Figure 7: DALI D0 perceives WS3, but instead of identifying

the correct "Bolting" skill, D0 perceives "Casting" such that

D0’s model contains now two wrong entries: both positions

for "Bolting" and "Casting" are wrong.

identification of a bolting station as a soldering station. Only after
the manipulation is done, the agent receives the percept and applies
it to the model.

The consequences are quite severe - another entry in the model
for station 𝑠′ will be overwritten with the position of 𝑠 as entries
for skills collide, even if the agent perceives 𝑠 correctly in a sub-
sequent percept. Hence, the agent’s current information on the
non-perceivable, far away station 𝑠′ is lost, but the agent holds the
belief that its knowledge is up to date, as the agent perceived the
“fact” only moments ago on its own (see Fig. 7). Additionally, the
agent may decide to start exploring the environment as the falsely
updated model suggests a disturbance.

4.2 Communication error

With DALI using EA for communication, updates on changes may
easily spread across the population, even if the range is limited. On
the other hand, updates containing errors may spread easily when
the only means to differentiate the information is a timestamp of
observation. Here, communication is key for errors on two accounts:
first, errors coming from perception errors (cf. Sec. 4.1) can be easily
shared with all other stations that are pulled by a requesting agent.
Second, messages can be distorted or misinterpreted to contain
wrong information. Based on Alg. 2, we introduce the probability
𝑝𝑐𝑜𝑚 that the agent evaluates after receiving requested observations
from another agent (the manipulation is marked): As before, the

Algorithm 6:Manipulated perception (excerpt)
1 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ← ask neighbor 𝐷𝑁 ;
2 forall entry on 𝑠𝑘𝑖𝑙𝑙 in 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 do

3 if 𝑓 𝑙𝑖𝑝 (𝑝𝑐𝑜𝑚) then
4 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛.𝑠 .𝑠𝑘𝑖𝑙𝑙 ← 𝑠′ .𝑠𝑘𝑖𝑙𝑙 with 𝑠′ ∈ 𝑆 |𝑠′ ≠ 𝑠;
5 end

6 if 𝑠𝑘𝑖𝑙𝑙 NOT in modelM then

7 M ← new entry on 𝑠𝑘𝑖𝑙𝑙 as in 𝐷𝑁 ;
8 . . .
9 end

10 end

manipulation cannot be detected by the agent. We replace the skill

DALI in Dynamic Adaptive Manufacturing ,

0 1 2 3

0

1

Y
X 4 5

2

3

0

Source

WS3

"Bolting"

8

"Soldering" == (0,10)
"Casting" == (6,12)

"Bolting" == (0,10),
"Soldering" == ???
"Soldering" == (5,2)

"Soldering"

Figure 8: Searching "soldering", DALI D0 the neighboring D8.

While D8 answers with the correct observation for "solder-

ing" at (0,10), D0 receives the wrong position (5,2). With the

incorrectly updated model, D0 sends AGV0 to (5,2).

of a received observation by some other station, which is applied
to the model. Note that the time stamps are nevertheless checked
for the original received station, so if the agent concludes to update
or invalidate an entry, it does so with the correct time stamps, but
for the wrong entry, possibly overwriting correct knowledge again
(see Fig. 8). Concerning the sending agent, as no feedback is sent
about applied or invalidated observations, the sender cannot know
whether the receiver understood the message correctly.

4.3 Measured parameters

We define parameters to measure the performance of DALIs for
their task as well as the efficiency of communication.

4.3.1 Task performance. We measure the system needed the time
to finish the list of products (TTF) and mean time to deliver (MTTD)
to judge the performance in the simulations over time [34]. To mea-
sure the TTF, we consider the total delivered products (TDP) over
the agent population 𝐴: TDP(𝑡) = ∑

𝑎∈𝐴 deliveredProducts(𝑎, 𝑡)
where deliveredProducts(𝑎, 𝑡) is the cumulative amount of de-
livered products for a single agent at time 𝑡 . When the TDP is equal
to the pre-given number of orders, all products were successfully
delivered to shipping. The faster, the better. The resulting time
when all products are delivered is the TTF. We define theMTTD for
a product 𝑝 in the set 𝑃 of all successfully delivered products in one
simulation run as: MTTD(𝑡) =

∑
𝑝∈𝑃 delivered(𝑝)−created(𝑝)

TDP(𝑡) where
delivered(𝑝) is when a product 𝑝 was created and created(𝑝)
when 𝑝 was successfully delivered to the specified station. The time
includes waiting time at the original station plus time spent on
the ride. The faster a product is delivered, the better. We evaluate
both measures at the last time steps 𝑡 = 𝑇𝑇𝐹 as performance indi-
cators for the overall run. Finally, we calculate the mean over all
repetitions of the scenarios.

4.3.2 Communication. We measure residue and delay based on
[15] to judge communication efficiency among DALIs, but modify
the formulas to fit the dynamic setting.

Residue is the percentage of agents that miss an update after
a disturbance. The residue for an update 𝑢 among the popula-
tion 𝐴, where 𝑆 ⊆ 𝐴 is the set of susceptible agents, at time 𝑡

is: Residue𝑢 (𝑡) =
|𝑆 (𝑡) |
|𝐴(𝑡) | . At the last time step before the next

disturbance cycle 𝑡𝑑 , we evaluate which agents have received all

updates in time and calculate the residue for the period. At 𝑡 = 𝑇𝑇𝐹 ,
the average of all residues is calculated. Residue shall be minimized
as it represents the percentage of agents that missed an update.

Delay measures the average time 𝑡𝑎𝑣𝑔 it took an update to arrive
at an agent after a disturbance’s occurrence. We measure the time
difference every 𝑡𝑑 until an agent either notices a change on its own
or gets a message that changes its model. Delay is only calculated if
an agent did receive an update successfully, thus we do not consider
agents that did miss updates. We calculate the average per agent
over the total amount of received updates per agent, and the simu-
lation’s average delay 𝑡𝑎𝑣𝑔 over the population at 𝑡 = 𝑇𝑇𝐹 . Delay
represents the speed of communication and shall be minimized.

4.3.3 Error correction. Wemeasure error correction for agents that
receive updates that lead to a correct model of the environment.
These updates are either the observation of a fact in the environ-
ment or the receipt of amessagewith new information from another
agent.

We measure all updates 𝑢 applied at time 𝑡 that changed an
agent’s modelM to correctly represent the environment 𝐸 at 𝑡 , as
well as whether the update originated from its own perception as
𝑐𝑜𝑟𝑟𝑃 or was communicated by others as 𝑐𝑜𝑟𝑟𝐶 . Of course, we only
count updates that change the state of the model from wrong to
correct. Additionally, we measure how long it takes an agent to
correct incorrect information in its model with the time to correct
𝑡𝑐𝑜𝑟𝑟 . Note that 𝑡𝑐𝑜𝑟𝑟 is different from delay 𝑡𝑎𝑣𝑔 : delay measures
the time it takes for agents to receive an update about changes in
the environment after the change has occurred. For all measures,
we calculate the average per agent over the total number of updates
received per agent.

5 SIMULATION SETUP AND RESULTS

5.1 Experiment setup

We extend our experiment with a shop floor of 25 × 25 floor tiles,
four workstations with the skills "casting", "bolting", "molding", and
"soldering", and 12 AGVs at random starting positions. The DALIs
may only perceive their direct adjacency of the eight neighboring
fields, as in Tileworld. Furthermore, the agents start with a correct
map of the setup as with [24].

Similar to our initial study, we fix the agent’s curiosity increase
with 𝑐𝑢𝑟 = 0.01 and pre-defined lists of 𝑃 = {50, 100, 250} products
with combinations of up to four distinct stations to be visited. Every
𝑡𝑑 cycles, we disturb the experiment setup periodically as part of the
environment dynamic by swapping two stations’ skills and chose
the periods of 𝜏𝑑 = {100, 150, 200, 250, 300} cycles and without (w.o.,
𝜏𝑑 = 𝑛𝑜𝑛𝑒). As probabilities for error, we vary the 𝑝𝑐𝑜𝑚 and 𝑝𝑒𝑟𝑟
each to create a respective error with a chance 1%, 5%, 10%, and
25%. We simulate two shop floor setups:

• Scenario A: source and shipping on opposite corners
• Scenario B: source and shipping close to the center

Wemade 50 repetitions for each scenario and stopped the simulation
after all products were delivered while measuring the presented
indicators from Sec. 4.3.

, Sebastian Schmid and Andreas Harth

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

10.76
39.64

17.04
62.47

23.8
79.54

41.96
113.46

20.61
64.31

24.24
76.95

31.32
95.23

48.2
118.34

28.1
84.44

31.93
94.77

38.82
105.43

51.45
120.9

39.5
107.92

41.52
107.7

47.88
118.76

58.05
126.32

Average Perception Correction Average Communication Correction

Fig. 9: 50 prod., 𝑡𝑑 = 100 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

7.87
34.15

14.81
58.59

22.66
80.98

40.45
111.86

16.78
60.27

22.16
73.91

27.46
90.57

44.37
117.14

24.97
78.0

29.09
88.46

33.73
100.06

47.65
119.72

38.22
107.34

40.95
107.66

46.04
116.89

58.27
131.14

Average Perception Correction Average Communication Correction

Fig. 10: 50 prod., 𝑡𝑑 = 150 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

6.75
31.43

11.98
52.07

19.6
74.82

38.27
109.2

15.15
58.48

20.91
72.48

25.85
85.73

44.11
115.54

23.69
77.85

27.6
90.43

33.4
98.59

45.63
113.49

35.83
99.02

39.17
105.04

46.16
117.48

53.4
123.29

Average Perception Correction Average Communication Correction

Fig. 11: 50 prod., 𝑡𝑑 = 200 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

5.6
27.57

11.32
50.74

17.57
71.49

41.69
117.76

14.43
56.66

19.56
72.12

25.39
85.5

44.04
115.39

21.8
74.57

28.67
87.71

31.87
92.8

47.71
122.81

35.7
101.92

40.96
109.67

44.49
115.9

57.04
131.22

Average Perception Correction Average Communication Correction

Fig. 12: 50 prod., 𝑡𝑑 = 250 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

5.73
29.78

10.56
47.72

17.37
73.2

36.16
105.26

14.41
55.93

19.44
70.13

23.95
82.45

42.05
115.23

20.3
70.79

26.37
88.51

29.75
94.45

43.22
110.08

36.55
103.5

39.06
107.26

43.43
116.04

56.54
130.19

Average Perception Correction Average Communication Correction

Fig. 13: 50 prod., 𝑡𝑑 = 300 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

3.36
24.16

8.06
44.22

14.41
65.92

32.88
105.21

10.84
49.11

15.88
65.18

22.43
81.81

38.92
110.64

18.17
69.44

24.05
80.56

28.73
94.91

44.05
114.8

33.53
97.06

34.95
101.03

43.54
112.57

53.06
125.33

Average Perception Correction Average Communication Correction

Fig. 14: 50 prod., 𝑡𝑑 = 𝑤.𝑜. (A)

100 150 200 250 300 w/o

2,000
4,000
6,000
8,000

Disturbance (in cyc)

Cy
cl
es

TTF for 100 prod.

0.01 0.05 0.1 nominal

100 150 200 250 300 w/o
0.5
1

1.5
2
·104

Disturbance (in cyc)

Cy
cl
es

TTF for 250 prod.

Fig. 15: TTF among disturbances of nominal DALI and with

𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚 as both 0.01, 0.05, 0.1

Performance with errors. Fig. 15 shows an overview of different
measured TTFs across nominal DALI behavior without errors in
comparison to performances with 𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚 . While the overall
performance is qualitatively similar (performance improves with
longer 𝑡𝑑), the effect of errors on the performance is clear: without
additional errors, DALI finishes a delivery of 100 products in about
2192.9𝑐𝑦𝑐 for 𝑡𝑑 = 100. With 1% for 𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚 , the delivery
takes 79% longer with 3930.8𝑐𝑦𝑐 in the same scenario. Note that
an error likelihood of 1% is still the best case. For 𝑃 = 50 we have
a factor from 1.63 to 2.05, for 𝑃 = 100 from 1.78 to 1.92, and for
𝑃 = 250 from 1.78 to 1.96 across all disturbances. On average, the
performance is 1.86 times longer for 1%.

In the worst case, when 25% of all percepts and communication
is distorted, the system can take eight times as long to finish the
delivery, e.g. for 50 prod with 𝑡𝑑 = 𝑛𝑜𝑛𝑒 the fault DALI finished in
6303.81𝑐𝑦𝑐; a factor of 8.03 compared to 784.98𝑐𝑦𝑐 in the nominal
case and 3.98 times worse compared to 1% with 1580.44𝑐𝑦𝑐 . For
𝑃 = 50 we have a factor from 5.54 to 8.03, for 𝑃 = 100 from 5.7 to
7.9, and for 𝑃 = 250 from 5.66 to 7.77 across all disturbances. For
the worst case, the system needs on average 6.89 times as long.

Despite the system suffering from the artificial errors we intro-
duce, DALI still manages to deliver all products in all cases. As

DALI in Dynamic Adaptive Manufacturing ,

expected, the performance gets worse with more frequent distur-
bances in the environment (as with nominal) and with an increased
error probability, but instead of failing for good, the DALI system
degrades gracefully. Still, the effect of recovery of performance
with a less frequent disturbance is getting less with a higher error
probability, e.g. for 100 delivered products, the nominal perfor-
mance improves from 2192.9𝑐𝑦𝑐 with 𝑡𝑑 = 100 to 1487.9𝑐𝑦𝑐 with
𝑡𝑑 = 𝑤/𝑜 (improved 32%), where 𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚 with 1% has a simi-
lar, but worse, improvement in the same scenarios from 3930.75𝑐𝑦𝑐
to 2859.5𝑐𝑦𝑐 (improved 27%), whereas 𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚 with 25% im-
proves merely from 8537.125𝑐𝑦𝑐 to 7668.6𝑐𝑦𝑐 (improved 10%).

Error correction. Fig. 9- 14 show the average proportions of cor-
rections for scenario A with 50 products3 for all agents among the
scenarios, where we discern correction coming from local observa-
tion by agents (perception correction) and corrections coming from
exchanged messaged among agents (communication correction).

We can compare both modes of correction, perception, and com-
munication, as we assume the same range for both in DALIs - on
the simulated shop floor the range includes the direct neighbor-
hood of “floor tiles” meaning that a DALI has to be directly next
to a workstation to perceive it and directly next to another DALI
to exchange information. In any case, the possibilities are limited
to receive updates as the range is small. If no errors were present,
obviously the direct observation of an agent would be the more
reliable source - the agent may directly perceive and thus update
its model with a fact. Received information from another DALI can
be outdated by the time it arrives at an agent, which is why DALIs
are cautious to apply updates if the time stamps are not acceptable.

The proportion of sources for correcting updates shows now
a different picture: communication is a far more frequent source
for correcting the model as assumed - the reason is that a DALI
is more likely to meet other agents on its way during delivery
than meeting, increasing the probability to exchange messages.
Also, the perception of a workstation is a “unique activity” (a DALI
arrives at a station, scans it, then leaves and keeps its observation
until contested) whereas communication can be repeated (as two
DALI pass each other several rounds of exchange may happen).
Still, for communication to work the time stamp has to fit - and
only because it happens more frequently doesn’t mean it is more
reliable (with a 25% chance of two passing DALIs to introduce for
4 exchanged entries one error in each other’s model on average is
devastating!). Respectively, the amount of perception corrections
rises with communication becoming more unreliable with rising
𝑝𝑐𝑜𝑚 .

Fig. 16 shows 𝑡𝑐𝑜𝑟𝑟 , the average time needed for an agent to
receive an update that corrects its model. The development shows
that with the rising likelihood of errors, the time to correct the
errors decreases. While the development may not seem intuitive,
we see two reasonable sources:
• The more errors exist, the more often agents start to explore
and thus need to invest time to update their model to reflect
the (assumed) true state and share updates (as is visible with
the number of corrections that rise with the probability of
errors)

3The figures for 100 products (Fig. 17 - 22) and 250 products (Fig. 23 - 28) are for
legibility on p. 12ff

• With serendipity, an artificially introduced error in the model
of an agent becomes true via disturbances. While the possi-
bility of such a coincidence exists, it is very small.

0.01 0.05 0.1 0.25
5
10
20
30
40

Communication err 𝑝𝑐𝑜𝑚 (in %)

Ti
m
e
to

co
rr
ec
t(
cy
c)

𝑡𝑑 = 𝑛𝑜𝑛𝑒

𝑝𝑒𝑟𝑟 = 0.01 𝑝𝑒𝑟𝑟 = 0.05 𝑝𝑒𝑟𝑟 = 0.1 𝑝𝑒𝑟𝑟 = 0.25

Fig. 16: Needed time to correct 𝑡𝑐𝑜𝑟𝑟 an error per agent with

different 𝑝𝑒𝑟𝑟 and 𝑝𝑐𝑜𝑚

6 DISCUSSION

We study an agent-based decentralized control system for intralogis-
tics as an alternative to centralized control systems as decentralized
systems promise us advantages in terms of adaptability, indepen-
dence from centralized networks, and graceful degradation. While
our original work focuses on designing DALIs and measuring their
adaptive performance in dynamic environments, we did not con-
sider their ability for graceful degradation. In terms of fault-stop
errors where a DALI breaks down completely, it is easy to pre-
dict that a system of DALIs will perform worse over time as fewer
DALIs can serve product requests until too few are in the system
and deadlocks occur such that the system does not work at all.

Here, we introduce errors that are quite malicious and in terms of
graceful degradation more interesting: instead of agents receiving
or perceiving obviously faulty information in their environment,
e.g. nonsensical information exposed by a workstation or gibberish
sent by an agent, which lets them conclude concerning their inter-
nal model that something went wrong, we deliberately manipulate
errors such that they are believable and plausible. As a harmful
consequence, such an update does not only overwrite already ex-
isting knowledge but also invalidates entries that depend on the
changes. For an agent that relies purely on its model such an error
has a far-reaching impact.

Still, such errors are everyday problems: a faulty sensor generates
a wrong measure, a damaged label has a misleading identification,
or the agents’ environment was changed deliberately, e.g. because
of a changed shop floor layout, but the control software was not
updated - usually a temporary error but still one that entails an
undesired halt of the manufacturing shop floor.

Overall, we study, howwell mobile agents relying purely on local
perception can adapt in dynamic environments, where corrections
for possible internal errors come from most (and thus the biggest
impact exists), and thus conclude where to put focus on creating
an adaptive DALI system. Based on our measurements, we come to
the following conclusions:

, Sebastian Schmid and Andreas Harth

• We see that most corrections come from communication, but
as communication becomes unreliable, perception catches
up and compensates for the loss of communication updates.
• An increasing error rate leads to a loss of performance, as
expected, because of the need for DALIs for exploration to
correct their internal map. More exploration results in more
empty runs and a high MTTD, as products have a longer
waiting time.
• Despite an error rate of up to 25% for communication and
perceptions, all products were successfully delivered and
the system did not break down completely, e.g. because of
deadlocks.

As an increase in the error likelihood leads to more errors, DALIs
are more likely to detect a deviation of their model to the factual
environment state. As a consequence, 𝑡𝑐𝑜𝑟𝑟 decreases, as DALIs are
more often in a state of exploration as their model is unexpectedly
often wrong, resulting in empty runs and degrading performance.
Consistent with Kinny and Georgeff [24], we observe that with
reduced environmental dynamics the agent performance increases.
Additionally, we observe that the qualitative behavior of the system
is unaffected compared to a performance without errors.

Closely related are fundamental thoughts about distributed sys-
tems and their difficulties in reaching consensus [30]. The problem
of agents that share wrong information could be regarded as a
Byzantine Generals problem [27], but classical solutions are not
applicable as agents do not form a stable 3𝑚-regular graph nor
is it guaranteed that at most𝑚 agents generate wrong values as
failure occur randomly. To be adaptive, DALIs use a combination of
curiosity and exploration and then try to act accordingly: over time,
entries in their own model are actively questioned whether they
still hold, while when disturbances are noticed the ongoing task is
suspended [7] until a working state is reached. Thus, DALIs swing
between the states of active commitment to the tasks and suspend-
ing tasks on disturbances to gather up-to-date data by frontier-based
exploration [44] and epidemic communication [15]. The task is im-
mediately resumed when the DALI’s model is plausibly up-to-date
to solve the task [20]. The difference in TTF shows that despite
multiple possible detours because of wrong information, the overall
transportation task is nevertheless successfully solved (in the best
case only 1.86 times for a 1% error chance).

In [36] we already discussed the important role of curiosity to
think ahead of disturbances and explore the unknown. With our
current results, the importance is even more emphasized as the core
problem of dealing with unsure information outside the current
perception range is worsened by unreliable information sources.
Still, curiosity cannot guarantee a reliable adaption for all possible
disturbance cases, but at least give agents an incentive to care.
Several strategies exist to influence the behavior of DALIs in terms
of disturbance detection (be it because of an environmental change
or an internal defect): while the natural increase of curiosity 𝑐𝑢𝑟
can be influenced to steer a more or less curious DALI, we caution
against too drastic increases or decreases of 𝑐𝑢𝑟 as with both the
balance of a working and self-exploring DALI is disturbed. Either
too much exploration happens, causing empty runs, or not enough
exploration happens, causing odysseys that end up in the worst
case in a random walk behavior.

The generalizability of our results is of course dependent on
additional factors that influence the system performance, e.g. the
shop floor area, the number and perception range of AGVs, and the
station setup. We observe similar developments of our approaches
in the compared scenarios for performance and communication, so
we are confident our results can be reproduced in similar settings.

A future refinement of the DALI approach can - without relaxing
the problem - only happen along a few parameters that change:

• how the agent models its environment,
• the communication style,
• the exploration on disturbance detection,
• or the mechanism for disturbance anticipation.

While the model is currently a mapping from workstation skill
to location, time stamps for observation and invalidation, and cu-
riosity, a more refined representation is possible, but can easily
introduce additional dependencies on central components (distur-
bance rates for workstations, spawn rates for products, etc.). While
DALIs might be able to measure these during execution, their ob-
servations will stay guesses as they are difficult to verify during
execution time - in the end, the system shall solve transportation
tasks and that is the metric that counts. Every other overhead that
does not immediately improve the performance will be punished.
The communication style is deliberately chosen as simple entropy -
as we have seen in previous work [35] a 1-PULL communication
style is sufficient for mobile agents and reduces the coordination
overhead among agents while it is still fast enough to share in-
formation even in a distributed population. Exploration with an
increased perception radius may help to gather more useful data
at once (but also additional wrong data in the presence of faulty
sensors), while alternatives to the frontier-based exploration [44]
can increase the speed of collaborative explorations. Our work aims
for a rigorous baseline performance with DALIs using only the least
possible information without any centralized assumption over the
environment or the agent population. When relaxing these strict
requirements, e.g. allowing shared but not necessarily centrally
controlled resources for agents, related variants of Yamauchi’s ap-
proach may be used instead, see f.i. [4] to create shared maps, or
RACER [47] which uses a pairwise interaction between agents with
designated exploration areas, or [37] which uses manipulable floor
tiles to act as a medium to place information in the environment as
indirect communication between agents - although the argument
of centralized mechanism introduced indirectly is applicable again.
Disturbances anticipation ahead lies on a spectrum from rigid and
simplistic to complicated: While AGVs can simply circle between
stations, as discussed in [39] as a first-encountered-first-served rule,
we deem such solutions that are tied to the floor layout as unsuitable
for a use case with high disturbances. Burgard et al. [8] use local
assignments of targets based on shared utility values based on the
predicted explored area, and save other robots’ targets when they
are in range to coordinate the exploration efforts. In a comparison
of approaches for coordinated exploration under communication
constraints [13], the authors find a similar approach most efficient,
where robots evaluate each other’s poses for coordinated explo-
ration and select a random frontier to explore when it checks true
for other nearby robots.

DALI in Dynamic Adaptive Manufacturing ,

All in all, we argue that a system may adapt with simple, dis-
tributed agents even in complex dynamic systems, using few as-
sumptions about the world. In combination with our original work,
we have shown that a DALI system can not only rival a centralized
control approach like VDA5050 [42] in nominal situations, but also
function under pressure of environmental dynamics and internal
faults, albeit to the cost of a more careful and complex system de-
sign. Despite using only local communication and perception, the
performance of DALI to inform all members and to deliver all prod-
ucts is encouraging. In our opinion, the real strength to use a DALI
system plays out not necessarily as a replacement for centralized
control, but as a backup system. Industry favors central control
because of its simplicity, but systems with centralized control can
experience failures, f.i. hardware and software defects, network
failures, power outages, cybersecurity problems, or scalability is-
sues because of high complexity, where the control system becomes
nonfunctional. We believe that a fail-safe system for an AGV con-
trol system like VDA5050 is best realized by using a multi-agent
system (MAS) approach like DALI, where the AGV control can be
switched to decentralized when the central control fails. From an
AGV’s point of view, the control is the same: with a connection to
CC, AGVs receive destinations and act on reflexes. Without a con-
nection, DALIs choose the AGVs’ targets, keep track of the world’s
state in their model, explore, and communicate with other DALIs
in range. Thus, DALIs enable decentralized adaptivity as a fail-safe
system in environments with difficult constraints - instead of not
at all or with extensive redundant hardware. As a consequence,
shop floors may use hybrid, adaptive systems that work in dynamic
environments. Here lies a research direction, especially for intralo-
gistics [18, 39] or transportation [5]. Further applications include
unfeasible environments for global networks for CC (steel walls,
underground mines), where expenses for redundant hardware for
downtimes shall be saved, or strict safety regulations apply (oil,
gas, fine dust e.g. in wheat mills). AGVs can organize with DALIs,
before coming back to an area where they are controlled by a CC.

7 CONCLUSION AND OUTLOOK

We presented our decentralized agent-based approach called DALI
uses local information to adapt successfully to a dynamic environ-
ment based on a driverless transportation system. We confronted
DALIs with a shop floor environment that suffers from unforeseen
disturbances as well as a manipulated perception and communi-
cation by distorting both to include random errors. Based on the
controlled experiments, we measured the performance of given
transportation tasks as well as the capabilities to self-adapt as a
population by exploring the environment for disturbances and
sharing updates. We conclude that DALI can adapt as a group to
external and internal disturbances while degrading gracefully in
their performance. We discussed several axes along which the base-
line approach of DALI may be improved, including communication
style, modeling, perception, and exploration, as well as the possibil-
ities for a fail-safe system that works as a backup for centralized
control. With the current system, we presented a distributed and
decentralized control agent for intralogistics that works without
centralized assumptions in its process.

REFERENCES

[1] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. 1998. Multi-robot
cooperation in the MARTHA project. IEEE Robotics & Automation Magazine 5, 1
(1998), 36–47. https://doi.org/10.1109/100.667325

[2] A. Alfeo, E. Ferrer, Y. Carrillo, A. Grignard, L. Pastor, D. Sleeper, M. Cimino, B.
Lepri, G. Vaglini, K. Larson, M. Dorigo, and A. Pentland. 2019. Urban Swarms: A
new approach for autonomous waste management. In 2019 International Confer-
ence on Robotics and Automation (ICRA). 4233–4240.

[3] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009.
Methodologies for Data Quality Assessment and Improvement. ACM Comput.
Surv. 41, 3, Article 16 (jul 2009), 52 pages. https://doi.org/10.1145/1541880.1541883

[4] Ana Batinović, Juraj Oršulić, Tamara Petrović, and Stjepan Bogdan. 2020. De-
centralized Strategy for Cooperative Multi-Robot Exploration and Mapping.
IFAC-PapersOnLine 53, 2 (2020), 9682–9687. https://doi.org/10.1016/j.ifacol.2020.
12.2618 21st IFAC World Congress.

[5] A. Bazzan and F. Klügl. 2014. A review on agent-based technology for traffic
and transportation. The Knowledge Engineering Review 29, 3 (2014), 375–403.
https://doi.org/10.1017/S0269888913000118

[6] J. O. Berndt. 2013. Self-Organizing Logistics Process Control: An Agent-Based
Approach. InAgents and Artificial Intelligence, J. Filipe and A. Fred (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 397–412.

[7] M. Brenner and B. Nebel. 2009. Continual planning and acting in dynamic
multiagent environments. Autonomous Agents and Multi-Agent Systems 19, 3 (01
Dec 2009), 297–331. https://doi.org/10.1007/s10458-009-9081-1

[8] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. 2005. Coordinated multi-
robot exploration. IEEE Transactions on Robotics 21, 3 (2005), 376–386.

[9] Victor Charpenay, Tobias Käfer, and Andreas Harth. 2022. A Unifying Framework
for Agency in Hypermedia Environments. In Engineering Multi-Agent Systems,
Natasha Alechina, Matteo Baldoni, and Brian Logan (Eds.). Springer International
Publishing, Cham, 42–61.

[10] Victor Charpenay, Daniel Schraudner, Thomas Seidelmann, Torsten Spieldenner,
JensWeise, René Schubotz, Sanaz Mostaghim, and Andreas Harth. 2021. MOSAIK:
A Formal Model for Self-Organizing Manufacturing Systems. IEEE Pervasive
Computing 20, 1 (2021), 9–18. https://doi.org/10.1109/MPRV.2020.3035837

[11] R. Chisu. 2010. Kommunikations- und Steuerungsstrategien für das Internet der
Dinge. Dissertation. Technische Universität München. https://mediatum.ub.tum.
de/doc/821003/821003.pdf

[12] H.-L. Choi, L. Brunet, and J. P. How. 2009. Consensus-Based Decentralized
Auctions for Robust Task Allocation. IEEE Transactions on Robotics 25, 4 (2009),
912–926. https://doi.org/10.1109/TRO.2009.2022423

[13] Alysson Ribeiro Da Silva and Luiz Chaimowicz. 2023. Analysis of Opportunistic
Interactions for Multi-robot Exploration Under Communication Constraints.
In 2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium
on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE). 242–247.
https://doi.org/10.1109/LARS/SBR/WRE59448.2023.10332975

[14] R. de Lemos et al. 2013. Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32.

[15] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, and D. Terry. 1987. Epidemic Algorithms for Replicated Database
Maintenance. In Proceedings of the Sixth Annual ACM Symposium on Principles
of Distributed Computing (Vancouver, British Columbia, Canada) (PODC ’87).
Association for Computing Machinery, New York, NY, USA, 1–12.

[16] G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes. 1996. A taxonomy for
multi-agent robotics. Autonomous Robots 3, 4 (01 Dec 1996), 375–397.

[17] E.H. Durfee and V. Lesser. 1991. Partial global planning: a coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics 21, 5 (1991), 1167–1183. https://doi.org/10.1109/21.120067

[18] J. Fottner, D. Clauer, F. Hormes,M. Freitag, T. Beinke, L. Overmeyer, S. N. Gottwald,
R. Elbert, T. Sarnow, T. Schmidt, K.-B. Reith, H. Zadek, and F. Thomas. 2021.
Autonomous Systems in Intralogistics – State of the Art and Future Research
Challenges. In Logistics Research. 14:02. https://doi.org/10.23773/2021_2

[19] S. Giordani, M. Lujak, and F. Martinelli. 2013. A Distributed Multi-Agent Produc-
tion Planning and Scheduling Framework for Mobile Robots. Computers & In-
dustrial Engineering 64 (01 2013), 19–30. https://doi.org/10.1016/j.cie.2012.09.004

[20] J. Harland, D. Morley, J. Thangarajah, and N. Yorke-Smith. 2017. Aborting,
suspending, and resuming goals and plans in BDI agents. Autonomous Agents
and Multi-Agent Systems 31, 2 (01 Mar 2017), 288–331.

[21] O. Holland and C. Melhuish. 1999. Stimergy, Self-Organization, and Sorting in
Collective Robotics. Artificial Life 5 (04 1999), 173–202.

[22] T. Hubauer, S. Lamparter, M. Roshchin, N. Solomakhina, and S. Watson. 2013.
Analysis of data quality issues in real-world industrial data. In Annual Conference
of the PHM Society.

[23] Y. Imoto, Y. Tsuji, and E. Kondo. 2011. A control method with pheromone
information for a transport system. Artificial Life and Robotics 16, 1 (01 Jun 2011),
112–115. https://doi.org/10.1007/s10015-011-0899-7

[24] D. N. Kinny and M. P. Georgeff. 1991. Commitment and Effectiveness of Situated
Agents. In Proceedings of the 12th International Joint Conference on Artificial

https://doi.org/10.1109/100.667325
https://doi.org/10.1145/1541880.1541883
https://doi.org/10.1016/j.ifacol.2020.12.2618
https://doi.org/10.1016/j.ifacol.2020.12.2618
https://doi.org/10.1017/S0269888913000118
https://doi.org/10.1007/s10458-009-9081-1
https://doi.org/10.1109/MPRV.2020.3035837
https://mediatum.ub.tum.de/doc/821003/821003.pdf
https://mediatum.ub.tum.de/doc/821003/821003.pdf
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1109/LARS/SBR/WRE59448.2023.10332975
https://doi.org/10.1109/21.120067
https://doi.org/10.23773/2021_2
https://doi.org/10.1016/j.cie.2012.09.004
https://doi.org/10.1007/s10015-011-0899-7

, Sebastian Schmid and Andreas Harth

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

22.6
83.44

32.39
120.62

47.55
158.27

80.88
216.79

37.16
125.72

51.13
161.26

61.09
186.1

91.55
228.25

54.16
165.98

59.83
176.88

72.16
204.05

97.07
236.8

77.22
205.04

83.99
217.63

88.83
223.51

113.25
249.73

Average Perception Correction Average Communication Correction

Fig. 17: 100 prod., 𝑡𝑑 = 100 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

15.3
68.97

27.5
113.48

40.78
154.04

75.88
211.82

31.47
117.22

41.98
148.57

55.66
174.85

87.73
233.72

47.15
151.42

56.55
175.46

67.5
193.22

92.66
232.29

71.53
198.2

79.59
212.51

86.05
220.07

106.39
241.04

Average Perception Correction Average Communication Correction

Fig. 18: 100 prod., 𝑡𝑑 = 150 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

12.4
61.39

23.42
105.41

29.94
114.7

40.02
143.57

36.34
145.42

71.75
207.78

53.25
176.78

85.11
226.17

43.9
145.41

51.6
166.7

63.34
188.47

89.94
224.38

72.55
201.91

75.93
207.94

85.12
220.66

105.0
241.63

Average Perception Correction Average Communication Correction

Fig. 19: 100 prod., 𝑡𝑑 = 200 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

11.1
57.71

22.27
102.5

28.76
111.7

39.32
141.0

34.76
141.81

71.43
212.88

54.27
178.95

79.72
216.62

41.15
142.76

49.76
165.63

62.29
187.88

92.85
233.42

71.0
199.57

75.83
208.35

80.3
211.21

103.61
240.96

Average Perception Correction Average Communication Correction

Fig. 20: 100 prod., 𝑡𝑑 = 250 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

10.33
56.61

20.37
99.72

26.49
104.77

36.89
135.94

36.03
145.37

69.99
203.44

50.69
170.43

82.34
226.18

40.55
142.21

52.58
169.32

61.32
186.37

87.52
223.89

67.92
198.96

74.51
205.91

81.63
218.29

106.02
246.88

Average Perception Correction Average Communication Correction

Fig. 21: 100 prod., 𝑡𝑑 = 300 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

5.06
43.13

15.45
88.64

28.42
128.79

64.73
199.29

20.31
94.36

30.56
124.09

41.78
156.64

73.34
210.47

34.19
127.32

44.3
152.12

54.56
173.69

82.22
213.57

61.27
180.39

67.22
190.79

78.61
211.34

98.49
235.19

Average Perception Correction Average Communication Correction

Fig. 22: 100 prod., 𝑡𝑑 = 𝑤.𝑜. (A)

Intelligence - Volume 1 (Sydney, New South Wales, Australia) (IJCAI’91). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 82–88.

[25] N. Klein. 2012. The impact of decentral dispatching strategies on the performance
of intralogistics transport systems. Dissertation. Technische Universität Dresden.
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-147739

[26] L. Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (jul 1978), 558–565.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382–401.
https://doi.org/10.1145/357172.357176

[28] V. Lesser and D. Corkill. 1983. The Distributed Vehicle Monitoring Testbed: A
Tool for Investigating Distributed Problem Solving Networks. AI Magazine 4, 3
(Sep. 1983), 15. https://doi.org/10.1609/aimag.v4i3.401

[29] A. Omicini, A. Ricci, and M. Viroli. 2008. Artifacts in the A&A meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems 17, 3 (01 Dec
2008), 432–456. https://doi.org/10.1007/s10458-008-9053-x

[30] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence
of Faults. J. ACM 27, 2 (April 1980), 228–234. https://doi.org/10.1145/322186.
322188

[31] M. E. Pollack and M. Ringuette. 1990. Introducing the Tileworld: Experimentally
Evaluating Agent Architectures. In AAAI Conference on Artificial Intelligence.

[32] V. Robu, H. Noot, H. La Poutré, and W.-J. van Schijndel. 2008. An Interactive
Platform for Auction-Based Allocation of Loads in Transportation Logistics. In
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems: Industrial Track (Estoril, Portugal) (AAMAS ’08). International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 3–10.

[33] S. Russell and P. Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.).
Prentice Hall Press, USA.

[34] M. Savelsbergh and M. Sol. 1995. The General Pickup and Delivery Problem.
Transportation Science 29 (02 1995), 17–29. https://doi.org/10.1287/trsc.29.1.17

[35] S. Schmid and A. Harth. 2022. Decentralized Self-Adaption With Epidemic
Algorithms for Agent-Based Transportation. In 2022 IEEE 42nd International
Conference on Distributed Computing Systems Workshops (ICDCSW). 99–104.

[36] Sebastian Schmid and Andreas Harth. 2024. Enabling Adaptation in Dynamic
Manufacturing Environments with Decentralized Agent-Based Systems and
Local Perception. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied
Computing (Avila, Spain) (SAC ’24). Association for Computing Machinery, New
York, NY, USA, 235–242. https://doi.org/10.1145/3605098.3635967

[37] S. Schmid, D. Schraudner, and A. Harth. 2021. Performance Comparison of Simple
Reflex Agents Using Stigmergy with Model-Based Agents in Self-Organizing
Transportation. In 2021 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C). 93–98.

[38] S. Schmid, D. Schraudner, and A. Harth. 2023. MOSAIK: An Agent-Based Decen-
tralized Control System with Stigmergy for a Transportation Scenario. In The
Semantic Web, C. Pesquita, E. Jimenez-Ruiz, J. McCusker, D. Faria, M. Dragoni,
A. Dimou, R. Troncy, and S. Hertling (Eds.). Springer Nature Switzerland, Cham,
697–714.

[39] T. Schmidt, K.-B. Reith, N. Klein, andM. Däumler. 2020. Research onDecentralized
Control Strategies for Automated Vehicle-based In-house Transport Systems – a
Survey. In Logistics Research. 13:10. https://doi.org/10.23773/2020_10

[40] J. Schuhmacher and V. Hummel. 2018. Development of a descriptive model for in-
tralogistics as a foundation for an autonomous control method for intralogistics
systems. Procedia Manufacturing 23 (2018), 225–230. “Advanced Engineer-
ing Education & Training for Manufacturing Innovation”8th CIRP Sponsored
Conference on Learning Factories (CLF 2018).

[41] A. Schuldt. 2012. Multiagent Coordination Enabling Autonomous Logistics. KI -
Künstliche Intelligenz 26, 1 (01 Feb 2012), 91–94.

[42] VDA5050 2020. VDA 5050 - Interface for the communication between automated
guided vehicles (AGV) and a master control. Standard. Verband der Automobilin-
dustrie e.V. (VDA), Berlin.

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-147739
https://doi.org/10.1145/357172.357176
https://doi.org/10.1609/aimag.v4i3.401
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1287/trsc.29.1.17
https://doi.org/10.1145/3605098.3635967
https://doi.org/10.23773/2020_10

DALI in Dynamic Adaptive Manufacturing ,

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

53.2
200.11

80.92
297.47

117.52
391.43

196.99
527.6

93.34
313.97

119.56
379.64

150.06
455.48

216.13
544.37

128.08
391.67

149.56
435.91

173.93
488.63

231.79
564.06

187.06
495.02

198.8
514.57

215.06
544.58

263.38
586.9

Average Perception Correction Average Communication Correction

Fig. 23: 250 prod., 𝑡𝑑 = 100 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

38.62
169.59

66.71
273.78

98.86
371.8

185.8
518.78

82.22
296.41

105.61
366.25

137.09
433.38

207.53
544.83

115.84
373.87

134.72
424.12

162.0
472.4

224.85
562.79

176.53
488.72

189.38
507.85

206.21
530.58

259.14
589.1

Average Perception Correction Average Communication Correction

Fig. 24: 250 prod., 𝑡𝑑 = 150 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

32.03
149.97

60.29
263.28

91.65
362.43

179.15
520.81

73.14
274.39

98.79
349.42

127.12
420.02

205.11
543.28

107.12
358.51

128.18
410.15

154.14
464.66

221.16
552.73

170.54
483.5

187.63
512.15

202.81
530.19

254.2
581.43

Average Perception Correction Average Communication Correction

Fig. 25: 250 prod., 𝑡𝑑 = 200 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

28.23
144.39

54.62
250.97

90.41
357.13

175.17
517.93

69.03
273.19

94.15
342.64

126.37
423.32

194.86
536.93

104.05
357.81

124.12
406.42

148.75
453.99

219.78
556.86

167.25
473.79

181.5
501.46

200.61
530.25

246.57
573.31

Average Perception Correction Average Communication Correction

Fig. 26: 250 prod., 𝑡𝑑 = 250 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

25.06
136.11

50.46
241.96

86.31
349.99

175.12
516.58

64.67
255.96

90.08
337.64

122.94
419.33

201.64
549.48

101.95
353.69

124.59
405.64

147.51
454.03

217.32
560.85

164.41
479.46

181.79
511.78

198.95
528.27

251.98
584.13

Average Perception Correction Average Communication Correction

Fig. 27: 250 prod., 𝑡𝑑 = 300 (A)

0.0
1

0.0
5 0.1 0.2

5

Perception error probability

0.01

0.05

0.1

0.25

Co
m

m
un

ica
tio

n
er

ro
r p

ro
ba

bi
lit

y

12.87
108.85

35.71
213.44

67.23
313.85

151.68
476.5

51.66
231.88

74.87
306.25

104.2
382.99

175.67
502.98

84.68
316.14

106.17
369.2

130.57
419.74

196.33
519.52

150.94
443.22

168.14
473.54

184.46
503.72

234.6
554.08

Average Perception Correction Average Communication Correction

Fig. 28: 250 prod., 𝑡𝑑 = 𝑤.𝑜. (A)

[43] W. Xiang and H.P. Lee. 2008. Ant colony intelligence in multi-agent dynamic
manufacturing scheduling. Engineering Applications of Artificial Intelligence 21, 1
(2008), 73–85. https://doi.org/10.1016/j.engappai.2007.03.008

[44] B. Yamauchi. 1997. A frontier-based approach for autonomous exploration.
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA’97. ’Towards New Computational Principles for
Robotics and Automation’ (1997), 146–151.

[45] O. Zedadra, N. Jouandeau, H. Seridi, and G. Fortino. 2017. Multi-Agent Foraging:
state-of-the-art and research challenges. Complex Adaptive Systems Modeling 5,

1 (02 Feb 2017), 3. https://doi.org/10.1186/s40294-016-0041-8
[46] K. Zhang, Z. Yang, and T. Başar. 2021. Multi-Agent Reinforcement Learning: A

Selective Overview of Theories and Algorithms. Springer International Publishing,
Cham, 321–384. https://doi.org/10.1007/978-3-030-60990-0_12

[47] Boyu Zhou, Hao Xu, and Shaojie Shen. 2022. RACER: Rapid Collaborative
Exploration with a Decentralized Multi-UAV System. arXiv:2209.08533 [cs.RO]
https://arxiv.org/abs/2209.08533

https://doi.org/10.1016/j.engappai.2007.03.008
https://doi.org/10.1186/s40294-016-0041-8
https://doi.org/10.1007/978-3-030-60990-0_12
https://arxiv.org/abs/2209.08533
https://arxiv.org/abs/2209.08533

	Abstract
	1 Introduction
	2 Related work and background
	2.1 Intelligent agents and model-based agents
	2.2 Self-adapting agents in intralogistics

	3 Approach and Realization
	3.1 Assumptions for our approach
	3.2 Formalization
	3.3 Behavior of DALI

	4 Error and measurements
	4.1 Perception error
	4.2 Communication error
	4.3 Measured parameters

	5 Simulation Setup and Results
	5.1 Experiment setup

	6 Discussion
	7 Conclusion and Outlook
	References

