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Abstract

Web standards such as RDF (Resource Description Framework) facilitate data integration over large number of
sources. The resulting interlinked datasets describe objects, their attributes and links to other objects. Such datasets
are amenable for queries beyond traditional keyword search and for visualisation beyond a simple list of links to
documents. Given that data integrated from the open web exhibits enormous variety in scope and structure, the
mechanisms for interacting with such data have to be generic and agnostic to the vocabularies used. Ideally, a system
operating on web data is easy to use without upfront training. To this end, we present VisiNav, a system based on
an interaction model designed to easily search and navigate large amounts of web data (the current system contains
over 18.5m RDF triples aggregated from 70k sources). In this paper we introduce a formal query model comprised
of four atomic operations over object-structured datasets: keyword search, object focus, path traversal, and facet
specification. From these atomic operations, users incrementally assemble complex queries that yield sets of objects
as result. These results can then be either directly visualised or exported to application programs or online services
for further processing. The current system provides detail, list, and table views for arbitrary types of objects; and
timeline and map visualisations for temporal and spatial aspects of objects.
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1. Introduction

Keyword search over hypertext documents is an
established technology and is used by a large ma-
jority of web users [14]. Search engines are popular
because i) users are accustomed to the concept of
hypertext – documents and links – and ii) search
engines employ a simple conceptual model: the en-
gines return those documents that match the speci-
fied keywords. Search engines operate over millions
of documents which have been collected automati-
cally, however, the functionality is limited: the en-
gine returns only links to sites but not directly the
actual answer or data items sought. Typical key-
word phrases used for search are insufficient to spec-
ify a complex information need since they consist
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mostly of only a few words [14]; moreover, informa-
tion expressed in documents in natural language is
ambiguous and thus hard to process automatically.
Standards such as RDF and OWL (Web Ontol-

ogy Language) provide means of describing objects
and integrating data about objects from large num-
bers of sources which may only loosely coordinate.
However, there is the open question of how end users
should express complex queries over such datasets. A
promising approach is to use a menu-based dialogue
system in which users construct the query incremen-
tally [34] [38]. Offering only valid choices ensures
that the user can only pose queries which can be sat-
isfied by the available data, preventing empty result
sets. Designing an interaction model and developing
a useable system for interrogating collaboratively-
edited datasets poses several requirements:
(i) Intuitive use: both occasional users and
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subject-matter experts should be able to in-
teract with the data immediately. The user
interface should be consistent and allow users
to quickly derive results with a few clicks.

(ii) Universality: previous attempts at using
structured information have been restricted
to manually crafted domain-specific datasets
since the data on the web lacked quantity (no
general-domain information available) and
quality (no shared identifiers, no interlink-
age). Users should be constraint as little as
possible in constructing queries while keeping
the system easy to use.

(iii) Zero configuration: data on the web comes
in an abundance of formats and vocabularies.
Consequently, manual intervention is a labour
intensive task, rendering manual intervention
infeasible.

(iv) Flexibility: web data is often noisy and may
contain duplicates, erroneous items, mal-
formed syntax and incorrect formatting, so
the user interface should be able to deal with
irregular data gracefully. The system has to be
flexible enough to deal with diverse content,
both in terms of schema and noisy data.

(v) Scalability: since we target the web as a data
source the system has to scale competently,
which has implications on the architecture and
implementation of the system. Also, quick re-
sponse times enhance the user experience.

(vi) User satisfaction: the system should be visu-
ally appealing and users should be able to im-
port the results of their information seeking
task into application programs to get a sense
of achievement immediately.

In this paper, we describe VisiNav, a fully imple-
mented system 1 based on a visual query construc-
tion paradigm. Given that VisiNav operates over
data rather than documents, operations offered can
go beyond simple keyword searches and result visu-
alisations can be more elaborate than just showing
ten result documents. The users of the system can
construct complex queries from several atomic op-
erations. Our system is unique in that it is the first
system which offers these features over datasets con-
sisting of millions of RDF triples collected and au-
tomatically integrated from the open web.
The initial step in the proposed interaction model

is typically a keyword search to locate objects, lever-
aging existing familiarity of users with search en-

1 http://visinav.deri.org/

gines. In subsequent steps, users refine their query
based on navigation primitives; as such, the interac-
tion model leads to an explorable system that can
be learned through experimentation. Since the sys-
tem calculates the possible next steps based on the
current state, only legal choices are displayed and
thus the user can only compose queries which the
system can answer.
The contribution of this research is two-fold:

– We adapt browsing and interaction mechanisms
for schema-less interlinked datasets collected from
the web. Previous work on visual interfaces either
assumes datasets with limited variance in schemas
[32] [19], limited expressivity of query operations
[24] [17], or a strict partitioning of datasets [18].
VisiNav allows for users posing expressive query
operations over interlinked web datasets with a
large variance in schemas used.

– We introduce the notion of trees (or nested rela-
tions) as result model for web data exploration
due to the use of the path traversal operation.
Previous work assumes single [38] or multiple sets
[18] [22] as result model.
The system satisfies a large fraction of the require-

ments set out for the Semantic Web Challenge. The
data used in the current VisiNav system is under
diverse ownership (data from over 70k sources), the
dataset is heterogeneous (more than 21k different
vocabulary URIs) and contains substantial quan-
tities of real world data (more than 18.5m state-
ments). Meaning is represented and processed us-
ing SemanticWeb technologies (OWL and reasoning
[16]). The system incorporates ranking [12] to pri-
oritise data and data items, and utilises Web stan-
dards such as HTML, CSS and JavaScript for the
user interface.
We provide an overview of the user interface in

Section 2, present and motivate the choice of query
operations and formalise the result model in Section
3, and discuss design choices in Section 4. Section 5
covers related work, and Section 6 concludes.

2. Overview and Preliminaries

In the following, we describe the characteris-
tics of the target dataset collected from the web,
present example queries, and introduce the concep-
tual model and selected tasks carried out over such
datasets.
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2.1. Web Data

Common to data currently found on the Web in
structured formats (microformats, XML, RDF) is
that data publishers take a loosely object-centred
view. RDF in particular uses URIs 2 as global iden-
tifiers for objects, which, if multiple sources reuse
identifiers, leads to an interconnected object space
encoded in a graph-structured data format. Cur-
rently, reuse of identifiers is particularly common in
social networking and social media data, expressed
in FOAF 3 for people, SIOC 4 for online commu-
nity sites, and DC 5 for documents and other media.
While a large number of current RDF files use a mix
of these vocabularies, data publishers use a plethora
of other vocabularies, too.
For example, the most diverse dataset used during

our experiments contains data from 70k sources us-
ing over 21k different vocabulary URIs (classes and
properties). The amount of variance in the dataset
is enormous; as a result, manual intervention should
be as minimal as possible, and the system should
make as little assumptions about the schema used as
possible to arrive at a general and universal method
for exploring the dataset.

2.2. Conceptual Model

Norman [29] argues that the conceptual model of
a system has to fit the user’s own conceptual model
about it. We therefore introduce first the assumed
conceptual model, i.e. what the users have to know
about the system before interacting with the system.
VisiNav’s conceptual model for navigation as-

sumes an object-oriented view, describing objects,
their attributes and links to other objects. At-
tributes of objects are expressed using datatype
properties, and links to other objects are specified
using object properties 6 . Objects and properties
are identified via identifiers (e.g. URIs). Attributes
can have datatypes such as integer or date. Please
note that there is no clear distinction between

2 Uniform Resource Identifiers, http://www.rfc-editor.

org/rfc/rfc3305.txt
3 Friend-of-a-Friend, http://foaf-project.org/
4 Semantically Interlinked Online Communities, http://

sioc-project.org/
5 Dublin Core, http://dublincore.org/
6 as specified in OWL, Web Ontology Language, http://

www.w3.org/2004/OWL/

instance-level objects and schema-level ones –
classes and properties can be instances themselves.
Users perceive and act on objects, in-line with

early graphical user interfaces [25]. In general, there
is a 1:1 correspondence between the objects in the
dataset and the objects displayed to the user, loosely
following the “naked objects” approach [7]. Users
are able to search and navigate the objects in the
dataset; a user query yields objects as a result. Users
can choose to display the result set in detail, list, or
table view; optionally, a timeline or map visualisa-
tion is available if the result objects contain suitable
information. In addition, users are able to export
the results to application programs or services.

2.3. Tasks

In the following, we introduce a set of example
queries that are prototypical for the type of queries
a user can pose to the system. Given the wide avail-
ability of information about people and communi-
ties, we use the social network scenario to study user
interfaces on collaboratively-edited datasets. How-
ever, the interaction model and the implemented
system are domain independent and thus applica-
ble to any object-structured dataset. We list a num-
ber of example queries – that can be answered with
currently available web data – with increasing com-
plexity in Table 1 7 .

Query Description

1 objects matching the keyword phrase
“tim berners-lee”

2 information available about timbl:i

3 objects foaf:made by timbl:i

4 sioc:Posts foaf:made by timbl:i

5 people that timbl:i foaf:knows

6 objects foaf:made by people that
timbl:i foaf:knows

7 locations where people that timbl:i

foaf:knows are foaf:based near

8 objects of rdf:type foaf:Person

Table 1
Example queries. Identifiers in typewriter are part of the
query.

7 timbl:i expands to http://www.w3.org/People/

Berners-Lee/card\#i; throughout the paper we assume the
standard namespace prefixes for rdf, rdfs, owl, foaf, sioc
and dc
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VisiNav supports three generic views for display-
ing results: detail, list, and table. The detail view
shows all properties pertinent to a single object in
a two column-format. The list view shows a few
selected properties in a list of objects of typically
ten objects at a time, similar to search engine re-
sults (Figure 1). In the list view, users can choose to
download the data in RSS. The table view shows all
datatype properties of the current result in a tabular
view, typically up to hundred at a time, similar to
spreadsheets. In the table view, the users can down-
load a version of the data displayed in comma sep-
arated value (CSV) format for further processing.

Fig. 1. List view of the query “people that timbl:i knows”
(Query 5).

VisiNav currently supports visualisations for tem-
poral and spatial aspects of objects. The system ren-
ders temporal attributes (i.e. those with datatype
xsd:date or xsd:dateTime) in a SIMILE timeline
view 8 . In the timeline view, users can choose to
download the data in iCal format and thus import
the data into calendaring applications. Spatial prop-
erties (i.e. objects with geo:lat and geo:longprop-
erties) are rendered in a Google map view 9 . The
map view displays all objects in a result set that have

8 http://www.simile-widgets.org/timeline/
9 http://maps.google.com/

both geo:lat and geo:long properties attached to
them.

3. Query Operations and Result Model

In the following we introduce VisiNav’s query
operations and describe how to compose complex
queries from atomic operations, and present a map-
ping of query results encoded as RDF into a generic
(i.e. schema-agnostic) object model for manipula-
tion within a programming language.

3.1. Query Operations

To construct queries, users select operations that
are common to existing faceted browsing and navi-
gation systems. We list the feature matrix of these
systems in Section 3.2; we argue that by using a
set of features used in existing systems we capture
the community consensus of operations that are
deemed necessary and useful for interacting with
object-structured datasets.
– Keyword Search (K)
quad Users may specify keywords to pinpoint ob-
jects of interest. The operation leads to an initial
set of results based on a broad matching of string
literals connected to objects. We perform match-
ing on keywords without manually extending the
query for synonyms or other natural language pro-
cessing techniques. Rather, we leverage the noise
in web data, i.e. the fact that the same resource
might be annotated using different spellings or
different languages. Keyword search has the in-
teresting property that the users do not need to
know the schema of the data, enabling users to
pose queries without previous domain knowledge.

– Object Focus (O) The operation is similar to
following a hypertext link in a web browser. From
a set of results or a single result, the user selects
an object which is used to create a new query and
returns a result set containing the object. The re-
sult of a object focus selection operation is always
a result set with a single object.

– Path Traversal (P) Rather than arriving at
a single result by selecting a focus object, users
are also able to navigate a path along an object
property to establish a new set of results. Users
can select an object property which allows them to
perform a set-based focus change, i.e. they follow
a certain path, either from a single result or a set
of results.
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– Facet Selection (F) Another way of restrict-
ing the result set is via selecting facets. A facet is
a combination of a property and a literal value or
an object (distinguishing between datatype and
object properties). Facets are calculated relative
to the current result set. Based on derived facets,
the user can reformulate the query and obtain in-
creasingly specific result sets.

3.2. Feature Survey

Faceted browsing [38] has become popular as an
interaction form for sites which contain structured
data, such as Ebay.com and Yelp.com [13]. In addi-
tion, the faceted browsing model has been adopted
in systems which operate over RDF datasets.
Our choice of a few core operations represents a

trade-off decision between complexity of queries and
ease of use. Table 2 compares the core features of
browsing systems taking an object-oriented perspec-
tive. Our system uses the core set of query primitives
common to a range of established browsing and nav-
igation systems for semi-structured data, providing
evidence that the selection of features in our sys-
tem represents a consensus in the community. This
suggests that a sizeable user community is able to
conceptually grasp the query operations offered by
VisiNav.

System K O P F Results

Magnet [32] x x - x set

MuseumFinland [19] x x - x set

GRQL [2] - x x o set

SWSE [17] x x - - set

/facet [15] x x - x set

BrowseRDF [30] x x - x set

ESTER [3] x x - x set

TcruziKB [27] x x x - set

Tabulator [24] - x x - tree

Falcons [6] x x - o set

Humboldt [22] x x x x sets

Parallax [18] x x x x sets

ECSSE [8] x x - - set

VisiNav x x x x trees

Table 2
Comparison of query operations (Keyword Search K, Object
Focus O, Path Traversal P, Facet Selection F) of systems
operating over object-structured data (x = yes, - = no, o =
only rdf:type facets).

3.3. Formal Query Model

An important aspect of usability of user interfaces
is consistency and predictability [28][29].We present
a formalisation of query operationswhich are used to
implement the system to ensure the system behaves
consistently and predictably, resulting in improved
usability.
We assume a collection of objects U identified via

URIs or blank nodes. Objects are described using
datatype properties PD with literal attributes L and
object properties PO denoting links to other objects
U . Properties can be objects as well: PD ∈ U and
PO ∈ U . We assume one relation quad(s, p, o, c) =
(U ×PD ∪PO ×L∪U ×U), modelling the source of
subject/predicate/object triples as fourth field. We
also assume a relation text(t, s) = (T × U) which
models an inverted index over tokens T derived from
the literals L using a string tokenisation method 10 .
Users start a query building process via specify-

ing a keyword, and then iteratively refine the query,
or start a new query based on the available choices
offered by the result set. Figure 2 illustrates the
high-level interaction cycle. During each interaction
step, the users select one of the operations, and the
system returns with a page containing a visual rep-
resentation of the query, state, and query results.
The query results are first displayed in a familiar list
view, but users can choose other views or visualisa-
tions depending on the properties of the objects in
the result set.

Fig. 2. Interaction flow diagram.

A query Q expressed over the object set U de-
scribed by the quad and text relations returns as re-

10A number of tokenisation methods have been proposed
in information retrieval – our approach is agnostic to the
tokenisation method used
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sult a number of sets R0...n where n is the number
of path traversal operations. The individual opera-
tions are defined in terms of relational algebra[1] as
follows:
– Keyword Search: the k operation returns a set of
objects which satisfy the keyword selection crite-
ria, and an empty result if there is no match. The
operation is defined as:
k(k0..m) = πs(σt=k0

text) ∩ . . . ∩ πs(σt=km
text)

– Object Focus: the o operation returns an object
with the specified URI, if the object exists in the
dataset, and an empty result otherwise. The op-
eration is defined as:
o(s′) = πs(σs=s′quad)

– Path Traversal: the p operation returns a set of
objects which satisfy the path selection criteria.
p always returns a result, since the user can only
choose valid paths. The operation is defined as:
p(p′) = πs,o(σp=p′quad)

– Facet Selection: the f operation returns a set of
objects which satisfy the selection criteria. f al-
ways returns a result, since the user can only
choose valid facets. The operation is defined as:
f(p′, o′) = πs(σp=p′∧o=o′quad)

3.4. Result Trees

A single result set is sufficient for keyword
searches, object focus (specifying an initial result
set), and facet selection (reducing the size of the re-
sult set). The path traversal operation is different:
traversing a path restricts the old result set (to the
objects with the specified property) and generates
a new result set (with the objects that are con-
nected via the specified property). Thus, iterative
application of the restriction and navigation oper-
ations leads to sets of focus nodes R0...n which are
connected to each other via the specified property
in the path traversal operation.
Consider, for example, the query “objects

foaf:made by people that timbl:i foaf:knows”
(Query 6). That query yields three result sets
R0, R1, R2. We assume that the query was con-
structed in the following way: the user uses object
focus operation to specify the object URI of Tim
Berners-Lee R0 = timbl:i, from there performs
path traversal along the foaf:knows property R1 =
people that Tim knows, and from there performs
another path traversal along the foaf:made prop-
erty yielding R2 = things made by people Tim
knows. An example result tree is shown in Figure

3. An alternative representation of the result trees
is in form of nested relations.

Tim Berners-Lee

Dan Brickley Henry Story Dan Connolly

FoaF Document for
Dan Brickley

Henry Story’s
FOAF file

del.ici.ous links
and notes

Semantic Web Tutorial
Using N3

Fig. 3. Partial result tree for query “objects foaf:made by
people that timbl:i foaf:knows” (Query 6). Labels dis-
played instead of URIs for clarity.

3.5. Topical Subgraphs and Result Objects

To be able to establish the connections between
objects shown in Figure 3 fromR0...n, and to be able
to render properties of objects in the result sets, the
system requires more information than just object
identifiers. The step involves a number of challenges:
– The dataset contains an RDF graph. For pre-
processing and displaying the objects we require
to manipulate the objects using a programming
language.

– To minimise the amount of data fetched and in-
crease response time, the system should only fetch
additional information about objects that are ul-
timately rendered. The result sets may contain
thousands of object identifiers, however, typically
only a few are displayed at once.

– Depending on view or visualisation, only partial
sections of the result object are required. For ex-
ample, the list view only requires a few properties
of an object.

– Since the data is very diverse and the amount
of information available for objects varies enor-
mously, we need to pick the best data for display.
For example, displaying thousands of quads in the
results view will likely overwhelm the users.

– To provide a meaningful display of information,
the system requires data items to be ordered,
showing the most important values first.
To solve the mismatch between RDF graph and

objects that can be manipulated in a programming
language, we use a generic implementation that
stores properties of objects similar to ActiveRDF
[31]. We cannot use mapping tools such as RD-
FReactor 11 since objects aggregated from many

11http://rdfreactor.semweb4j.org/
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web sources do not strictly adhere to the vocabu-
lary specifications. In addition, we require a way of
generic processing of objects regardless of type.
We employ ranking to minimise the amount of

data fetched and therefore reduce response time. We
assume a global rank for each element in U . Full
treatment of the ranking procedure is beyond the
scope of this paper (see [12] for details), however,
one can assume the occurrence count of a node as
sufficiently useful approximation for the popularity
of the node.
The system first orders the objects in R0...n ac-

cording to their global rank and then selects the
objects in the range that should be displayed. De-
pending on the selected view, the system constructs
a “topical subgraph” with all the information re-
quired to displaying the object. Given the topical
subgraphs adorned with result nodes of level 0 . . . n
in conjunction with the initial query we are able to
construct paths connecting the objects in various
layers of R0...n.
Once the topical subgraph is parsed into a pro-

gramming language object, the system orders the
properties, literals and associated objects pertaining
to the object according to the global rank. Thus, the
algorithms selecting the pieces of data to display can
retrieve elements of objects in order and more likely
display meaningful information than with random
order.

4. Discussion

In the following we discuss design decisions that
directly follow from the properties of our web
dataset. While existing work on faceted search cov-
ers datasets with little variation (e.g. [9] evaluates
datasets with 14 to 815 facets), our dataset contains
over 21k different vocabulary URIs (properties and
classes) mandating a different approach to faceted
navigation.

4.1. Ranking

Throughout the user interface the system has to
decide how to order data items. For example, the
set of result objects in the list view has to be or-
dered, the predicate/object combinations in the de-
tail view have to be ordered, and the properties in
the table view have to be ordered. In lieu of a fixed
schema to code against, and given the lack of render-
ing descriptions in e.g. Fresnel[4], ranking becomes

the method of choice for deciding on how to arrange
items in the visualisations.

4.2. Facets in Content

In faceted navigation the facets are aggregated
from all available items in the current result set. Var-
ious heuristics are applied to cut down the amount of
processing and the size of facets presented to the user
[9]. For web data on a large scale, these heuristics are
currently missing. Without such heuristics, comput-
ing an aggregated view of all facets in a large result
set (such as for query 8, rdf:type foaf:Person)
becomes very expensive. In addition, it is not clear
how to visualise the aggregated view consisting of
potentially hundreds of facets.
Given these issues, we exploit the fact that the de-

tail view contains all items required to specify addi-
tional facets restriction or path traversal operations.
Hence, the detail view is also used to specify pa-
rameters for additional query operations. By using
in-content facets in conjunction with drag-and-drop
actions reduces visual clutter and thus increases the
ink-to-data ratio, one of the tenets of good visual
design [35].
That use of in-content facets is also the reason

why the interaction always starts with a keyword
query or object focus operation: that users can pick
up a facet or path traversal from the initial result set
as input to both the current query or a new query.
The alternative of just using point-and-click actions
would require a large number of buttons cluttering
the user interface (for example, the user interface
would require three buttons next to each object to
allow for the object focus, add facet to current result,
and use facet to construct new query operations).

4.3. Evaluation

The system underwent several user tests and ex-
pert reviews during design and development. We
used the “thinking aloud” method [20] on proto-
types using both theMondial dataset [26] and aWeb
dataset, which led to several changes and adapta-
tions of the system. Complete user tests are subject
to future work.

5. Related Work

A number of systems exist that operate over RDF
data. Broadly speaking, most of the generic data
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browsing systems follow the “naked objects” ap-
proach [7]: objects are displayed directly without
type-specific styling; as a result, user interfaces can
be generated automatically and do not need domain-
specific adaptation. Ideally, systems would provide
means for styling the display of objects based on
templates (if there exists a template for a specific
type of objects) similar to Fresnel [4] or Tal4Rdf 12 ,
however, declarative templating languages for RDF
is still a developing area of research.
Most of the current RDF browsers implement a

series of design steps that can be described in terms
of the Semantic Hypermedia Design Method [10].
The method describes techniques to perform re-
quirement analysis, data modelling tasks, defining
user interactions and the final display of objects.
In a sense, our approach is a generalised version of
the method, where, rather than specifying data and
interaction model in concrete terms pertaining to a
schema, we describe our abstract interface – the in-
formation exchange between users and system – in
terms of general query operations, and result pages
as generic rendering of trees of objects. Our con-
crete interface – the look and feel – is implemented
using a multi-layered rendering pipeline spanning
server (RDF, queries and XML) and client (XSLT
and CSS), with only minimal assumptions on the
schema used to describe the objects.
Rather than operating on objects described in

RDF documents, search engines such as Swoogle [11]
and Sindice [36] assume a document-centric model.
The main operation of the systems is to return RDF
documents which contain specified keywords. As a
result, the systems do not allow to integrate data
about the same object originating from different
RDF documents; the systems also lack functional-
ity such as facet selection ond path traversal which
require an object-oriented perspective rather than a
document-centric one.
Systems for browsing and displaying semi-

structured data range from quite basic browsing
facilities (allowing only to navigate from one object
to another) to systems including constructs such as
negation [30] or nested facets [37]. Semantic Me-
diaWiki [23] allows to embed complex queries into
wiki pages, however, these queries typically repre-
sent a once-off query and do not allow for iteratively
refining results. Typical linked data browsers fetch
data on demand and thus lack features such as key-
word search or facet selection which require query

12http://champin.net/t4r/

processing capabilities over the entire collected and
integrated dataset.
The systems most closely related to our system in

terms of features are GRQL [2], Humboldt [22] and
Parallax [18]. GRQL relies on schema information
rather than automatically deriving the schema from
the data itself, a feature required for web data which
does not necessarily adhere to the vocabulary defini-
tions. GRQL lacks keyword search, a useful feature
when operating on arbitrary data, since keywords
are independent of any schema. Rather than allow-
ing arbitrary facets, GRQL allows to restrict based
on the rdf:type predicate. GRQL is, to our knowl-
edge, the earliest system that provides functional-
ity to perform set-based navigation. Parallax [18]
is a recent system which exhibits browsing features
similar to ours. However, Parallax operates over the
Freebase dataset which is manually curated and re-
quires the user to select one of the many disparate
datasets contained in Freebase; our system operates
over a fully integrated RDF dataset collected from
the web. In contrast to Parallax which lacks rank-
ing, VisiNav prioritises the display of data based on
global ranks. Although Parallax uses multiple re-
sult sets, the connections between the result sets are
not propagated to the level of the user interface; our
system maintains result paths in the results trees.
Finally, we provide a set of export plug-ins which
allows to directly load result sets into application
programs and online services for display or further
processing.
NLMenu [34] is an early system advocating

the use of multi-step query construction based on
menus. Faceted browsing [38], while less expres-
sive in terms of the complexity of queries, has
become popular and is used on e-commerce sites
such as Ebay.com. Polaris [33] provides complex
query and aggregation operations, however, oper-
ates over relational data and thus requires a priori
knowledge about the schema used. Cammarano et
al. [5] describe a method to match data with visu-
alisation specifications based on schema matching
algorithms. However, their method does not in-
clude means for users to graphically construct the
visualisation specification.
While natural language question answering inter-

faces are judged preferable to other interfaces by
users [21], they are not in common use today. De-
spite user training with regards to the capabilities
and limitations of a natural language system, users
quickly develop negative expectations about the sys-
tem due to the relatively high error rates in parsing
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and interpreting natural language [34]. Users are un-
able to understand the limitations of such systems,
that is, to distinguish between conceptual coverage
(i.e. does the dataset contain the answer?) and lin-
guistic coverage (i.e. is the system capable of pars-
ing the query?). One way of reducing the error rate
in parsing queries could be restricting the type of
questions a user may ask to the system.

6. Conclusion

The ability to integrate hitherto disparate pieces
of data and thus enable applications to re-purpose
data in unanticipated ways enables novel applica-
tions but at the same time introduces new challenges
to the design of user interfaces. In this paper, we in-
troduce a general, formal model for searching and
browsing objects, and present a prototype system
implementing these ideas. The interaction model
provides operations that allow users to explore and
visualise data without requiring knowledge about
the schema of the data. Users are able to learn the
structure of the domain of interest while interacting
with VisiNav.
The system provides a universal way of interact-

ing with any RDF dataset, without manual cura-
tion of the data or domain-specific adaptation of
the interface, and thus can directly applied to data
from the open web. In addition, the system allows
to rapidly develop and employ data integration
systems in more confined environments such as in-
tranets where the data is typically domain-specific
and the number of data sources confined, which
opens the door for cost-effective manual curation of
the data. In such environments, providing domain-
specific widgets for visualising popular types of
objects (similar to the current timeline and map vi-
sualisations) is a way to further increase the overall
utility of the system.
Potential areas of future work include to inves-

tigate the possibility of mapping the generic query
operations to other modalities, such as natural lan-
guage or speech input. Also, we would like to test
our system on new hardware such as touch screens,
and investigate how groups of users can use VisiNav
to collectively explore and analyse data integrated
from vast amounts of sources.
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