
SaVeWoT: Scripting and Verifying Web of Things
Systems and Their Effects on the Physical World

Justus Fries1[0000−0003−3433−7245], Michael Freund2[0000−0003−1601−9331], and
Andreas Harth2,3[0000−0002−0702−510X]

1 Technical University of Munich, Munich, Germany
2 Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany

Abstract. We introduce SaVeWoT (Scripting and Verifying Web of
Things Systems), an approach for designing, formally verifying, and de-
ploying decentralized control systems based on the W3C WoT. SaVe-
WoT consists of two main parts: the SaVeWoT language and the SaVe-
WoT compiler. The SaVeWoT language models devices (i.e., Things),
controllers that orchestrate Things, virtual composite Things (i.e., sub-
systems consisting of multiple Things), interactions between these com-
ponents, and their effects on the physical world. The SaVeWoT com-
piler uses Thing Descriptions (TDs) and SaVeWoT behavior descrip-
tions along with correctness specifications in Linear-time Temporal Logic
(LTL) to automatically generate a Promela model, which is validated
using the SPIN model checker. We demonstrate the feasibility of the
SaVeWoT approach by verifying a conveyor belt system as an example
and conducting an empirical evaluation.

Keywords: Web of Things · Static Verification · Safety.

1 Introduction

TheWeb of Things (WoT) and the WoT Thing Description (TD) ontology enable
interoperable interaction with Internet of Things (IoT) devices (Things). When
building networked automation and control systems, e.g., in manufacturing [1] or
building automation [2], interoperability enables the use of devices from various
vendors and manufacturers. Interoperability is helpful for deployment and during
the development and design phase of a system, as engineers can compare and
use different components (e.g., devices, subsystems, and solutions) from various
vendors. Because controllers interact with Things according to a specification
developed by an engineer [2], integrating Things requires not only a description
of the Things but also of the interactions between controllers and Things (i.e.,
all system components). These interactions can become complex as the system
grows and cause unintended but subtle effects or bugs. With SaVeWoT we enable
engineers to find such unintended effects via model checking [3]. We focus on
physical world effects and want to integrate SaVeWoT into the design phase of
system development to find bugs as early as possible.

2 J. Fries et al.

Integrating model checking into any design process leads to two main chal-
lenges: Ease of use and choosing the right level of abstraction for the model to
check [3]. Existing approaches to model checking WoT systems [4] solve these
issues by relying on rule-based programming and introducing strong assump-
tions (discussed in section 3.2) about how Things interact. For SaVeWoT, we
introduce and use a scripting language based on JavaScript. SaVeWoT eases the
assumptions, which enables SaVeWoT to integrate the physical world into model
checking through descriptions of behavior via scripts.

Additionally, previous work on model checking in IoT and WoT has primarily
focused on the Trigger-Action Programming (TAP) where TAP rules are spec-
ified independently and trigger based on events to execute actions. While TAP
rules are useful for smart home scenarios, the W3C WoT covers various domains,
and the WoT Scripting API [5] is based on JavaScript and not rules. In addition,
many previous approaches did not consider the physical world as a part of the
system and instead formally verified the state of Things.

Our approach, SaVeWoT, enables model checking WoT systems using WoT
TDs and scripts. Central to our approach is a model of the physical world de-
scribed using ontologies [6], specifically the TD ontology [7] as well as the Sen-
sor, Observation, Sampler, and Actuator (SOSA) and Semantic Sensor Network
(SSN) ontologies [8]. Things sense or actuate so-called Features of Interest (FoIs)
of the physical world, e.g., the temperature in a room. Such a model of the phys-
ical world is machine-readable, usable for inference or reasoning, and can be
integrated with other physical world models. For SaVeWoT we define composite
Things [9, 10] as Things that control other Things, i.e., subsystems of the WoT
system. Concurrency in WoT systems is introduced via concurrently running
controllers.

We define a formal language based on JavaScript and the WoT Scripting API
that is executable and designed for translation to formally verifiable models.
When describing behavior in scripts, interactions with the physical world are
expressed via reading (e.g., sensing the temperature) and writing (e.g., setting
the temperature on a thermostat) variables representing FoIs.

After introducing our approach using an example (section 2), we provide
related work (section 3). The contributions of this paper are:

– A formal WoT system model (section 4) that explicitly facilitates formal
verification of physical world effects.

– An executable, formally verifiable language (section 5) based on W3C WoT
standards.

– A proof-of-concept implementation (section 6) and an evaluation that illus-
trates the feasibility of our approach (section 7).

Finally, section 8 summarizes the most important aspects of our approach and
highlights future work.

SaVeWoT 3

2 SaVeWoT by Example

We now illustrate our approach with an example WoT system for a conveyor
belt that moves objects on the belt in one direction, see figure 1 (1). The system
consists of the following components (figure 1 (2)): a motor drives the conveyor
belt, two photoelectric sensors detect objects on the belt, and a controller. The
controller orchestrates the motor to move objects, e.g., work pieces, from the
start to the end of the belt. The physical world is modeled using two FoIs that
are sensed by the respective sensors. The first sensor measures the physical space
at the start of the conveyor belt (objectAtStartFoI), while the second sensor
measures the physical space at the end of the belt (objectAtEndFoI)

Controller

Photo-
electric

Sensor (x2)

ExposedThing
ConsumedThing

Motor

TD

{ }
TD

{ }

objectDetected
prop. aff.

run
action aff.

stop
action aff.

speedSetpoint
prop. aff.

(2)

Motor

Photoelectric
Sensor 2

(1)

FoI

Photoelectric
Sensor 1

FoI

Fig. 1. Physical layout with Features of Interest (1) and components and interfaces (2)
of the example WoT system. We refer to the FoI measured by “Sensor 1” as object-
AtStartFoI, while the FoI measured by “Sensor 2” is called objectAtEndFoI.

2.1 Web of Things by Example

In the context of WoT, the motor and photoelectric sensors are Things described
with a TD. The motor has three interaction affordances: the action affordances
run and stop, and an integer property affordance for reading and writing the
speedSetpoint. If the speedSetpoint is not set to a value greater than zero,
the motor does not run. The sensor has a read-only boolean property affordance
indicating whether the sensor detected an object or not, called objectDetected.
Both photoelectric sensors have an objectDetected property affordance. How-
ever, each sensor measures its respective FoI. The relations between interaction
affordances and FoIs are part of the TDs of the sensors and actuators.

The WoT Scripting API defines ConsumedThing and ExposedThing inter-
faces. A controller script is written against ConsumedThing interface methods
based on the interaction affordances in a TD. On the other hand, the behavior
of a Thing is described by a set of handlers as defined by the ExposedThing

4 J. Fries et al.

interface. Each handler describes the behavior of the Thing for a specific inter-
action affordance (e.g., the action run) and operation (in this example: invoke,
read or write).

The script for controller behavior is shown in listing 2.1. If an object is at
the start of the belt, the controller runs the motor to move the object. Once the
object is at the end, the motor is stopped. Listing 2.2 shows the script for the
Thing behavior. The motor moving an object on the belt is modeled through
the FoIs. The motor affects the physical world in a single step, i.e., an object is
either at the start or end of the belt. As a result, stopping the motor does not
affect any FoI.

1 while (true) {
2 objectAtStart = sensorStart.readProperty(objectDetected);
3 objectAtEnd = sensorEnd.readProperty(objectDetected);
4 if (objectAtStart && !objectAtEnd) {
5 motor.invokeAction(run);
6 } else {
7 motor.invokeAction(stop);
8 }}}

Listing 2.1. Controller script based on the ConsumedThing interface that moves objects
on the conveyor belt. This controller script has a bug: It does not set the speedtSet-
point.

1 motor.setActionHandler(run, () => {
2 if (speedSetpoint > 0 && objectAtStartFoI) {
3 objectAtStartFoI = false; objectAtEndFoI = true;
4 } else {
5 if (speedSetpoint > 0 && objectAtEndFoI) {
6 objectAtEndFoI = false;
7 }}});
8 motor.setActionHandler(stop, () => {});
9 motor.setPropertyReadHandler(speedSetpoint, () => {

10 return speedSetpoint; });
11 motor.setPropertyWriteHandler(speedSetpoint, (arg) => {
12 speedSetpoint = arg; });
13 sensorStart.setPropertyReadHandler(objectDetected, () => {
14 return objectAtStartFoI; });
15 sensorEnd.setPropertyReadHandler(objectDetected, () => {
16 return objectAtEndFoI; });

Listing 2.2. Thing script with motor and sensor handlers based on the ExposedThing
interface.

2.2 Model Checking by Example

SaVeWoT is designed to reuse the syntax of existing W3C WoT standards while
ensuring formally verifiable execution semantics. For each handler (listing 2.2)

SaVeWoT 5

and the controller (listing 2.1), the SaVeWoT compiler adds a process to the Spin
model, and for each FoI, a variable is introduced. The controller can interact with
Things using channels (see section 4.1), and standalone Things can change the
physical world by changing FoI variables. The FoI variable for objectAtStart-
FoI is initialized as true and objectAtEndFoI as false to represent that there is
an object at the start.

The example controller script contains a bug that causes the WoT system to
not move objects: the motor driving the belt must have its speed set point set
to a value > 0 to move any object on the conveyor belt, which the controller
does not do. With SaVeWoT and model checking, an engineer can specify the
requirement “the conveyor belt must eventually move objects to the end of the
belt,” using the “existence” LTL pattern [11] “objectAtEndFoI must be true at
least once” (see section 4.2). Checking the LTL pattern on the Spin model shows
that the program does not satisfy the pattern.

3 Related Work

We group previous work into behavioral extensions to WoT and formal verifica-
tion, including translation approaches, of control, IoT, and WoT systems.

3.1 W3C Web of Things Behavior

Several proposed extensions for WoT describe behavior through annotations.
Such extensions include permitted sequences of interactions [12], JSON-based
descriptions corresponding to UML sequence diagrams that represent mashups
[13], effects of action affordances on property affordances [14], effects expressed
as JavaScript embedded in TDs [15], and extending TDs with physics simulations
[16]. Generally, these approaches just represent applications built on top of WoT
interfaces and do not support any form of formal verification or mechanisms to
enforce restrictions or requirements.

3.2 Formal Verification

Recently, multiple tools and approaches have been proposed where a program-
ming language is used to generate both models and deployments. Lin et al. [3]
propose model checking models generated from Lingua Franca, a coordination
language for Cyber-Physical Systems. Similarly, for distributed systems, Hack-
ett et al. [17] present the language MPCal and the compiler PGo to translate
TLA+ models [18] to Go. Lastly, Lattuada et al. [19] enable formal verification
of a subset of the Rust language for systems programming.

Related work on formally verifying control systems is primarily based on
Programmable Logic Controllers (PLCs). Approaches with a focus on usability
using LTL patterns [20], on modeling communication link failures [21], or on
verifying communication time constraints [22] have been proposed. An early

6 J. Fries et al.

case study for model checking a production cell [23, 24] modeled a production
cell without concrete PLCs.

Previous work [25–29] on model checking IoT systems focused on TAP (also
called Event-Condition-Action (ECA)) rules and interactions between rules/pro-
grams due to a focus on smart home IoT. The general goal is to verify that rules
do not cause bad situations or interfere with each other. Some approaches focus
purely on the interactions of rules, while others incorporate models for IoT de-
vices, traces of the system, or timed automata. Instead of TAP rules, we use a
DSL based on JavaScript to ensure compatibility with existing WoT standards.

Krishna et al. [4] model check WoT systems based on a predecessor of the
W3C WoT. The authors create models of Things from just TDs using the fol-
lowing assumptions: Actions directly cause the emission of corresponding events,
actions modify the properties of a Thing, and Things cannot be composed to
create composite Things. SaVeWoT, in contrast, does not restrict how interac-
tion affordances relate to each other and instead relies on the descriptions of
Thing behavior in scripts.

4 Modeling Things and the Physical World

We first introduce the components of a WoT system and next show how the
architectural composition of Things is represented in SaVeWoT. We explain how
the physical world, communication and behavior are described in SaVeWoT and
finally show how these previous design decisions enable formally verifying effects
on the physical world via LTL formulas.

4.1 WoT System Components

In SaVeWoT, a WoT system consists of Things and controllers. Formally, we
define a set of Things T and a set of controllers C. Each Thing can be uniquely
identified by an IRI. A Thing can have property affordances P, action affordances
A, and event affordances E. Conceptually, interaction affordances are uniquely
identifiable individuals and belong to exactly one Thing, while a Thing may have
multiple affordances: pAff : P→ T, aAff : A→ T and eAff : E→ T.

Property affordances are either read-only, write-only or read-write. We in-
troduce a set of possible read-write combinations RW = {r, w, rw} and assign
one to each property affordance: propRW : P→ RW. Reading a property returns
data to the controller synchronously, while writing pushes data to the Thing.

Action affordances are invoked by controllers. When invoking an action af-
fordance, a controller can provide input parameters and receive output data.

Finally, event affordances enable a controller to subscribe to receive notifi-
cations from a Thing. The Thing can then emit events that contain data to the
controller.

Composition SaVeWoT enables the design of subsystems through the compo-
sition of Things. An example of such a subsystem is the initial conveyor belt

SaVeWoT 7

example. If a conveyor belt is also modeled as a Thing with interaction affor-
dances, the belt is a composite Thing that controls a motor. Composite Things
are Things that control other Things. Relationships between Things can be ex-
pressed using the SSN ontology through the hosts relation.

Restrictions Based on W3C Implementation Report TDs For the de-
velopment of SaVeWoT, we surveyed the TDs from the W3C WoT TD imple-
mentation report4 using SPARQL queries to find an expressive and often used
subset of interaction affordances and data types (i.e., data schemas) to limit
the state space of WoT system models. The surveyed TDs contain 90 Things
with 368 property affordances, 66 action affordances and five event affordances.
Due to the low prevalence of event affordances, the initial version of SaVeWoT
does not support event notifications and instead focuses on the more relevant
property and action affordances.

Modeling the Physical World and Standalone Things The initial con-
veyor belt example showed how FoIs can be used. FoIs can cover a wide variety
of aspects of the physical world: FoIs can represent a window, a room in a house,
or the house itself or the physical space deployed in front of a sensor5. Running
a conveyor belt’s motor moves objects on the belt toward the sensor. We model
that sensors measure the results of actuations by introducing global variables
for FoIs in the system model. Actuators can change a FoI variable’s value, and
sensors read the value. How the actuator changes the value is described in a
script.

1 @prefix td: <https://www.w3.org/2019/wot/td#> .
2 @prefix sosa: <http://www.w3.org/ns/sosa/> .
3 @prefix ssn: <http://www.w3.org/ns/ssn/> .
4 _:objectAtEndFoI a sosa:FeatureOfInterest .
5 [a td:PropertyAffordance ;
6 ssn:forProperty [a sosa:ObservableProperty ;
7 ssn:isPropertyOf _:objectAtEndFoI]].
8 [a td:ActionAffordance ;
9 ssn:forProperty [a sosa:ActuatableProperty ;

10 ssn:isPropertyOf _:objectAtEndFoI]].

Listing 4.1. TD (in Turtle) with a FoI and two interaction affordances (based on [30]).

Formally, we introduce a set F of all FoIs. The relation between FoIs and
Things is based on previous work by Charpenay and Käbisch [30] and the W3C
WoT TD standard [7, sec. 7.1] that aligns SOSA/SSN with the TD ontology.
Listing 4.1 shows an RDF example of the FoIs of a objectDetected property
affordance and a run action affordance in a conveyor belt system. An interaction

4 https://w3c.github.io/wot-thing-description/testing/report.html; available as a sin-
gle JSON-LD file at https://www.vcharpenay.link/talks/td-sem-interop.html.

5 See https://www.w3.org/TR/vocab-ssn/#SOSASample.

8 J. Fries et al.

affordance is related to an observable (for sensors) or actuatable (for actuators)
property (a different concept than property affordances). A property is associated
with (ssn:isPropertyOf) a FoI. For our formalization, we ignore properties
and instead introduce a direct relation from affordances to FoIs: hasFoI ⊆
(P ∪ A ∪ E)× F.

Interactions as Channel Communication Verifiable models consist of se-
quential processes communicating with each other using channels, which are
FIFO queues containing messages [31]. Due to our focus on property and ac-
tion affordances, we can model interaction affordances using a request-response
pattern. When a controller uses an interaction affordance, in the Spin model,
the controller sends a request message on a channel and immediately waits for
a response message.

In the translation to Spin, we introduce a channel for each interaction af-
fordance operation of each Thing and translate controllers and each affordance
handler to processes that interact via channels. As a result, different handlers of
a Thing can be executed concurrently. However, one controller can use only one
handler at a time.

4.2 Specifying Required Physical Effects

With SaVeWoT we aim to enable formal verification of effects on the physical
world. For formal verification, correctness properties that the system must fulfill,
i.e., requirements, are specified in a temporal logic. LTL has emerged as one of
the main temporal logics for model checking [32].

LTL is based on propositional logic. Thus, LTL formulas contain atomic
propositions (APs) that are either true or false in a system model’s states.
Our approach aims to verify effects on the physical world, which we achieve
by introducing FoIs as global variables. Since FoIs are variables, they can be
used in LTL formulas in value comparisons. For example, a presence sensor
measuring occupancy of a physical space can be expressed as the AP object-
Detected=true.

Additionally, LTL formulas consist of the operators from propositional logic
(e.g., →, ¬, ∨, ∧) as connectives between APs, and temporal operators can
be used as connectives to refer to time. The relevant temporal operators are:
“Always” (�ϕ) means the system model always has to satisfy ϕ, “Eventually”
(♦ϕ) means the system model has to satisfy ϕ now or at some point in the
future, and “Until” (ϕ1 U ϕ2) means the model has to satisfy ϕ1 until the model
satisfies ϕ2.

– Eventually there is an object at the end of the conveyor belt (existence
pattern): ♦objectAtEndFoI

– An object on a conveyor belt cannot be at two locations (FoIs) at the same
time (absence pattern): �¬(objectAtStartFoI ∧ objectAtEndFoI)

– An object progresses from the start to the end of the belt (response pattern):
�(objectAtStartFoI → ♦objectAtEndFoI)

SaVeWoT 9

– Trivial LTL formula that is satisfied by any system model (used in section 7):
� true

– After an object is at the start of a belt, the object must be detected at
the end next (used in section 7): �(objectAtStartFoI→ objectAtStart-
FoIU (¬objectAtStartFoI∧(¬objectAtStartFoIU objectAtEndFoI)))

LTL formulas, including nested formulas, are generally difficult to grasp for
non-experts [33]. A solution could be LTL patterns or templates that enable
non-experts to specify correctness properties [34].

5 Behavior Language

Now we present the formal grammar of the SaVeWoT language. The language
is a subset of JavaScript combined with the WoT Scripting API. The grammar
has C-style control flow with if and while statements. We split the grammar
into two parts, the grammar for controllers and the grammar for Things.

5.1 Controller Scripts

ControllerScript ::= statement+
statement ::= ifStmt|whileStmt|exprStmt|assignStmt|interactAffStmt
ifStmt ::= "if" parenExpr blockStmt ("else" blockStmt)?
whileStmt ::= "while" parenExpr blockStmt
exprStmt ::= expression";"
assignStmt ::= idOrField "=" (interactAffExpr|expression)";"
interactAffStmt ::= ID "." (invActExprStmt|writePropStmt)";"
parenExpr ::= "(" expression ")"
blockStmt ::= "{" statement* "}"
interactAffExpr ::= ID "." (invActExprStmt|readPropExpr)
expression ::= term (relationExpr|binOpExpr)? | "!"term
invActExprStmt ::= "invokeAction(" ID ("," term)? ")"
writePropStmt ::= "writeProperty(" ID "," term ")"
readPropExpr ::= "readProperty(" ID ")"
relationExpr ::= ("<" | ">" | "==" | "≤" | "≥" | "6=" | "&&" | "||") term
binOpExpr ::= ("+" | "−" | "×" | "÷") term
term ::= idOrField | INT | STRING | BOOL | parenExpr
idOrField ::= ID | ID "." ID

Listing 5.1. Simplified controller grammar based on the ConsumedThing interface for
client interactions.

Each controller script represents the behavior of one controller. Listing 5.1 shows
the formal grammar of the language for controller scripts in W3C EBNF6. The
WoT Scripting API ConsumedThing interface is integrated by using expressions
(*Expr) for interaction affordances with output and by using statements (*Stmt)

6 https://www.w3.org/TR/2010/REC-xquery-20101214/#EBNFNotation

10 J. Fries et al.

for affordances without output. Statements are nonterminals that do not pro-
duce any output and represent an instruction to do something, while expressions
are evaluated and stand for a value that is returned. For easier translation while
ensuring correct operational semantics, the production rules restrict interaction
affordance expressions to only appear on the right-hand side of assignment state-
ments and not, e.g., within an if statement’s condition.

5.2 Thing Scripts

ThingScript ::= (handler)+
handler ::= ID "." (invActHandler|writePropHandler

|readPropHandler)";"
invActHandler ::= "setActionHandler(" ID

", (" ID? ") => " (blockStmt|blockStmtWithRet) ")"
writePropHandler ::= "setPropertyWriteHandler(" ID

", (" ID ") => " blockStmt ")"
readPropHandler ::= "setPropertyReadHandler(" ID

", () => " blockStmtWithRet ")"
blockStmtWithRet ::= "{" statement* returnStmt "}"
returnStmt ::= "return" expression";"

Listing 5.2. Abbreviated Thing grammar based on the ExposedThing interface for
server interactions.

Listing 5.2 shows the formal grammar of the language for Thing scripts. A han-
dler program is a set of handlers for one or more Things. Handlers implement
the ExposedThing interface. A handler can act as a controller because the han-
dler bodies consist of statements from the controller script syntax (Listing 5.1),
which enables composite Things. Like the controller grammar, the Thing gram-
mar enforces that reading a property affordance returns a value but does not
accept any argument, and vice versa for writing property affordances.

6 Implementation of the Compiler

We implement a proof-of-concept (PoC) of SaVeWoT in JavaScript using the
Chevrotain parser library7. Our executable scripts use the WoT Scripting API
implementation node-wot8. As a target model checker, we chose Spin [35] as
Fu et al. [36] already showed that Spin can verify various Web Services based on
behavior descriptions. The translation workflow from TDs and scripts to models
can be seen in figure 2. The visitors iterate over the syntax trees and emit partial
models, which are assembled to a Promela model by the linker. The visitors and
the linker use the sets and relations used to formalize WoT systems (extracted
from TDs using SPARQL) to link all behavior descriptions and variables in the
model together.
7 https://chevrotain.io
8 https://github.com/eclipse-thingweb/node-wot

SaVeWoT 11

WoT TDs
of Things

TD

Behavior of
Things </>

{ }

Parser

SPIN true/false

Behavior of
controllers </>

Promela
Model

Parser

SPARQL
Engine

FoIs

Things &
interaction
affordances

Visitorsyntax trees

syntax trees Visitor

Linker

Thing model

Controller
model

node-wot

deployJavaScript

</>

LTL pattern

Fig. 2. Dataflow diagram showing the translation of TDs, scripts and correctness re-
quirements to the Spin model checker.

The input language of Spin, Promela, supports channel and C-style control
flow (if and while), which makes the translation from the SaVeWoT language to
Promela straightforward. The PoC handles the differences in blocking seman-
tics and variable scope between JavaScript and Promela. The translation to
JavaScript avoids the event loop (JavaScript’s built-in concurrency mechanism)
because its operational semantics are more complicated [37] than the opera-
tional semantics of Promela [38]. We instead facilitate concurrency by creating
separate scripts and using mutex locks during translation by the visitors.

7 Evaluation

To study the feasibility of our approach for large control systems with many
components, we evaluate Promela models translated by our PoC on consumer
hardware with an Intel i5-8295U CPU and 16 GB of RAM. We consider a series
of conveyor belts orchestrated by a controller. Each belt has a motor and an
ultrasonic sensor, which interact with the physical environment via a FoI. The
controller implements a control loop for each belt. The belt’s motor runs until
a certain distance is observed, after which the motor stops. We evaluate the
number of states, verification time, and verification memory consumption as
measured by Spin for Promela models.

First we increase the number of belts from one to 58, which increases the
number of Things (two per belt) from two to 116 respectively. Figure 3 (left)
shows the results. The number of states is linear in the number of Things. The
initial model with two Things has 76 states, which is increased to 4180 states
for 116 Things. The memory consumption appears almost linear, starting at
128.73 MB for one belt and increasing to 134.39 MB for 116 Things. The veri-
fication time exhibits a step-wise pattern. Spin measures zero ms for up to 30
Things and 60 ms for 116 Things.

In a second step, we verify the system with 28 belts (the highest number
of belts with a verification time of 10 ms) for increasingly large conjunctive
LTL formulas on the FoIs of each belt. We generate the verifier for up to 18
belt motors in the LTL formula. For LTL formulas longer than 18 belts Spin
takes multiple hours to generate a verifier, independently of the verification time.

12 J. Fries et al.

0

2.5 k
#s

ta
te

s

Model size for trivial formula
true

130

135

M
em

or
y

[M
B] true

LTL formula size for 28 belts

n
i = 1endFoIi

n
i = 1endFoIi

0 50 100
#Things

0

100

Ti
m

e
[m

s] true

10 20 30
#endFoIs in LTL formula

n
i = 1endFoIi

Fig. 3. Number of states, memory consumption and verification time for increasing
model and LTL formula sizes.

Figure 3 (right) shows that the state space is linear in the number of belts (up to
4288 states), while the memory footprint increases linearly (up to 131.86 MB).
The verification time is between 20 and 70 ms.

8 Conclusion and Future Work

We presented SaVeWoT, an approach to formally verify that WoT systems fulfill
requirements that specify desired or undesired physical effects. The main com-
ponents of SaVeWoT are a model of the physical world based on SOSA/SSN and
WoT, which enables expressing requirements on physical effects in LTL, and a
language that can be translated to models and deployments of WoT systems. We
evaluate our approach based on the model checker Spin on consumer hardware.
Our evaluation shows that SaVeWoT is feasible for verifying large WoT systems
on consumer hardware. As a result, SaVeWoT can be used to check whether var-
ious subsystems, when integrated, exhibit the intended effects on the physical
world.

Because we inherit various limitations from translating to Spin, we plan
to explore different tools like Uppaal, nuXmv or LTL satisfiability checking
tools like Black [39] in the future. We expect these tools to provide better
performance because they rely on modern and performant satisfiability solvers.
Further, we aim to integrate event affordances into SaVeWoT and want to in-
corporate graph-structured process representations [40] in the future.

Acknowledgments. This work was funded by the German Federal Ministry for Eco-
nomic Affairs and Climate Action (BMWK) through the Antrieb 4.0 project (Grant
No. 13IK015B).

SaVeWoT 13

References

1. Thuluva, A.S., Anicic, D., Rudolph, S., Adikari, M.: Semantic Node-RED for rapid
development of interoperable industrial IoT applications. Semantic Web 11(6),
949–975 (2020), https://doi.org/10.3233/SW-200405

2. Ramanathan, G., Husmann, M., Mayer, S.: Interoperability vs. Tradition: Benefits
and Challenges of Web of Things in Building Automation. In: IoT ’21: 11th Inter-
national Conference on the Internet of Things, November 8 - 12, 2021. pp. 57–63.
ACM (2021), https://doi.org/10.1145/3494322.3494330

3. Lin, S., Manerkar, Y.A., Lohstroh, M., Polgreen, E., Yu, S.J., Jerad, C., Lee, E.A.,
Seshia, S.A.: Towards Building Verifiable CPS Using Lingua Franca. ACM Trans.
Embed. Comput. Syst. 22(5s) (sep 2023), https://doi.org/10.1145/3609134

4. Krishna, A., Le Pallec, M., Mateescu, R., Salaün, G.: Design and Deployment of
Expressive and Correct Web of Things Applications. ACM Trans. Internet Things
3(1) (oct 2021), https://doi.org/10.1145/3475964

5. Kis, Z., Peintner, D., Aguzzi, C., Hund, J., Nimura, K.: Web of
Things (WoT) Scripting API. Working group note, W3C (Nov 2020),
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/

6. Cena, F., Haller, A., Lefrançois, M.: Semantics in the Edge: Sensors and actuators
in the Web of Linked Data and Things. Semantic Web 11(4), 571–580 (2020),
https://doi.org/10.3233/SW-200379

7. Käbisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web
of Things (WoT) Thing Description. Recommendation, W3C (Apr 2020),
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

8. Haller, A., Janowicz, K., Cox, S.J., Lefrançois, M., Taylor, K., Le Phuoc, D., Lieber-
man, J., García-Castro, R., Atkinson, R., Stadler, C.: The modular SSN ontology:
A joint W3C and OGC standard specifying the semantics of sensors, observations,
sampling, and actuation. Semantic Web 10(1), 9–32 (2019)

9. Freund, M., Fries, J., Dorsch, R., Schiller, P., Harth, A.: Wot2pod: An architecture
enabling an edge-to-cloud continuum. In: Proceedings of the 13th International
Conference on the Internet of Things. p. 42–49. IoT ’23, Association for Computing
Machinery, New York, NY, USA (2024), https://doi.org/10.1145/3627050.3627063

10. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kaji-
moto, K.: Web of Things (WoT) Architecture. Recommendation, W3C (Apr 2020),
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/

11. Giacomo, G.D., Masellis, R.D., Montali, M.: Reasoning on LTL on Finite Traces:
Insensitivity to Infiniteness. In: Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.
pp. 1027–1033. AAAI Press (2014), https://doi.org/10.1609/aaai.v28i1.8872

12. Korkan, E., Kaebisch, S., Kovatsch, M., Steinhorst, S.: Safe Interoperability for
Web of Things Devices and Systems, Lecture Notes in Electrical Engineering,
vol. 611, pp. 47–69. Springer (2020), https://doi.org/10.1007/978-3-030-31585-6_3

13. Kast, A., Korkan, E., Käbisch, S., Steinhorst, S.: Web of Things System Description
for Representation of Mashups. In: IEEE International Conference on Omni-layer
Intelligent Systems, COINS 2020, August 31 - September 2, 2020. pp. 1–8 (2020),
https://doi.org/10.1109/COINS49042.2020.9191677

14. Salama, F., Korkan, E., Käbisch, S., Steinhorst, S.: Towards a Behavioral Descrip-
tion of Cyber-Physical Systems Using the Thing Description. In: Proceedings of the
2021 Workshop on Descriptive Approaches to IoT Security, Network, and Applica-
tion Configuration. p. 6–9. DAI-SNAC ’21, Association for Computing Machinery,
USA (2021), https://doi.org/10.1145/3488661.3494030

14 J. Fries et al.

15. Mena, M., Criado, J., Iribarne, L., Corral, A.: Defining Interactions of
WoT Servients with Causality Relations. In: Proceedings of the 13th
International Conference on Management of Digital EcoSystems. p.
112–119. MEDES ’21, Association for Computing Machinery, USA (2021),
https://doi.org/10.1145/3444757.3485102

16. Salama, F., Tsirkunenko, A., Korkan, E., Käbisch, S., Steinhorst, S.: WoT-
Phyng-Sim: Integrating Physics Simulations with IoT Digital Twins us-
ing the Web of Things. In: IEEE International Conference on Omni-layer
Intelligent Systems, COINS 2023, July 23 - 25, 2023. pp. 1–8 (2023),
https://doi.org/10.1109/COINS57856.2023.10189326

17. Hackett, F., Hosseini, S., Costa, R., Do, M., Beschastnikh, I.: Compiling Dis-
tributed System Models with PGo. In: Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, March 25-29, 2023. pp. 159–175. ACM (2023),
https://doi.org/10.1145/3575693.3575695

18. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

19. Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, I., Zhou, Y.,
Howell, J., Parno, B., Hawblitzel, C.: Verus: Verifying rust programs us-
ing linear ghost types. Proc. ACM Program. Lang. 7(OOPSLA1) (apr 2023),
https://doi.org/10.1145/3586037

20. Adiego, B.F., Darvas, D., Tournier, J., Viñuela, E.B., Suárez, V.M.G.: Bringing
automated model checking to PLC program development - a CERN case study.
In: 12th International Workshop on Discrete Event Systems, WODES 2014, May
14-16, 2014. pp. 394–399. International Federation of Automatic Control (2014),
https://doi.org/10.3182/20140514-3-FR-4046.00051

21. Lesi, V., Jakovljevic, Z., Pajic, M.: Reliable industrial IoT-based distributed au-
tomation. In: Proceedings of the International Conference on Internet of Things
Design and Implementation, IoTDI 2019, Montreal, QC, Canada, April 15-18, 2019.
pp. 94–105. ACM (2019), https://doi.org/10.1145/3302505.3310072

22. Vogel-Heuser, B., Folmer, J., Frey, G., Liu, L., Hermanns, H., Hartmanns,
A.: Modeling of Networked Automation Systems for simulation and model
checking of time behavior. In: International Multi-Conference on Systems,
Signals & Devices, SSD 2012, March 20-23, 2012. pp. 1–5. IEEE (2012),
https://doi.org/10.1109/SSD.2012.6197943

23. Lewerentz, C., Lindner, T.: Formal Development of Reactive Systems: Case Study
Production Cell, Lecture Notes in Computer Science, vol. 891. Springer (1995),
https://doi.org/10.1007/3-540-58867-1

24. Paun, D.O., Marsha, C., Biechele, B.: Production Cell Revisited. In: Proceedings
of SPIN ’98 (1998)

25. Zhang, L., He, W., Martinez, J.J., Brackenbury, N., Lu, S., Ur, B.: AutoTap: syn-
thesizing and repairing trigger-action programs using LTL properties. In: Proceed-
ings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019. pp. 281–291. IEEE / ACM (2019),
https://doi.org/10.1109/ICSE.2019.00043

26. Trimananda, R., Aqajari, S.A.H., Chuang, J., Demsky, B., Xu, G.H., Lu, S.: Un-
derstanding and Automatically Detecting Conflicting Interactions between Smart
Home IoT Applications. In: Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. p. 1215–1227. ESEC/FSE 2020, Association for Computing
Machinery, USA (2020), https://doi.org/10.1145/3368089.3409682

SaVeWoT 15

27. Yu, Y., Liu, J.: TAPInspector: Safety and Liveness Verification of Concurrent
Trigger-Action IoT Systems. IEEE Trans. Inf. Forensics Secur. 17, 3773–3788
(2022), https://doi.org/10.1109/TIFS.2022.3214084

28. Kashaf, A., Sekar, V., Agarwal, Y.: Protecting Smart Homes from Unintended
Application Actions. In: 13th ACM/IEEE International Conference on Cyber-
Physical Systems, ICCPS 2022, Milano, Italy, May 4-6, 2022. pp. 270–281 (2022),
https://doi.org/10.1109/ICCPS54341.2022.00031

29. Alhanahnah, M., Stevens, C., Chen, B., Yan, Q., Bagheri, H.: IoTCom: Dissecting
Interaction Threats in IoT Systems. IEEE Transactions on Software Engineering
49(4), 1523–1539 (2023). https://doi.org/10.1109/TSE.2022.3179294

30. Charpenay, V., Käbisch, S.: On Modeling the Physical World as a Collection
of Things: The W3C Thing Description Ontology. In: The Semantic Web -
17th International Conference, ESWC 2020, May 31-June 4, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 12123, pp. 599–615. Springer (2020),
https://doi.org/10.1007/978-3-030-49461-2_35

31. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of
the ACM 30(2), 323–342 (apr 1983), https://doi.org/10.1145/322374.322380

32. Biere, A., Artho, C., Schuppan, V.: Liveness Checking as Safety Check-
ing. Electronic Notes in Theoretical Computer Science 66(2), 160–177
(2002), https://doi.org/10.1016/S1571-0661(04)80410-9, fMICS’02, 7th Interna-
tional ERCIM Workshop in Formal Methods for Industrial Critical Systems

33. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Little tricky logic:
Misconceptions in the understanding of LTL. Art Sci. Eng. Program. 7(2) (2023),
https://doi.org/10.22152/programming-journal.org/2023/7/7

34. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications
for Finite-State Verification. In: Proceedings of the 21st International Confer-
ence on Software Engineering. p. 411–420. ICSE ’99, Association for Computing
Machinery, New York, NY, USA (1999). https://doi.org/10.1145/302405.302672,
https://doi.org/10.1145/302405.302672

35. Holzmann, G.J.: The SPIN Model Checker - Primer and reference manual.
Addison-Wesley (2004)

36. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In:
Proceedings of the 13th international conference on World Wide Web, WWW
2004, New York, NY, USA, May 17-20, 2004. pp. 621–630. ACM (2004),
https://doi.org/10.1145/988672.988756

37. Loring, M.C., Marron, M., Leijen, D.: Semantics of Asynchronous JavaScript. In:
Proceedings of the 13th ACM SIGPLAN International Symposium on on Dy-
namic Languages. p. 51–62. DLS 2017, Association for Computing Machinery, USA
(2017), https://doi.org/10.1145/3133841.3133846

38. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
39. Geatti, L., Gigante, N., Montanari, A.: BLACK: A Fast, Flexible and Reliable

LTL Satisfiability Checker. In: Proceedings of the 3rd Workshop on Artificial In-
telligence and Formal Verification, Logic, Automata, and Synthesis hosted by the
Twelfth International Symposium on Games, Automata, Logics, and Formal Ver-
ification (GandALF 2021), Padua, Italy, September 22, 2021. CEUR Workshop
Proceedings, vol. 2987, pp. 7–12. CEUR-WS.org (2021), https://ceur-ws.org/Vol-
2987/paper2.pdf

40. Harth, A., Käfer, T., Rula, A., Calbimonte, J.P., Kamburjan, E., Giese, M.:
Towards Representing Processes and Reasoning with Process Descriptions on
the Web. Transactions on Graph Data and Knowledge 2(1), 1:1–1:32 (2024),
https://doi.org/10.4230/TGDK.2.1.1

