
SemWoT: Integrating W3C Web of Things
Devices into the Semantic Web

No Author Given

No Institute Given

Abstract. We introduce SemWoT, an approach to integrate Web of
Things (WoT) devices into the Semantic Web. SemWoT defines two map-
pings: a mapping between different IoT protocols using the WoT abstrac-
tion as an intermediate representation, and a mapping to generate RDF
mapping language (RML) templates based on semantic information to
map non-RDF data to RDF in a transparent way. Additionally, we im-
plement the SemWoT approach in a mediator, define an ontology called
aio to describe interactions with the mediator, and specify interaction
sequences to offer a RESTful Read-Write Linked Data interface. Our
evaluation of the SemWoT mediator shows that it introduces a consis-
tent overhead compared to direct access but offers the benefits of easy
HTTP-based data access and provides semantically annotated data.

Keywords: Web of Things · Semantic Web · Read-Write Linked Data.

1 Introduction

Internet of Things (IoT) devices communicate with other devices, gateways or
the cloud using various communication protocols depending on the application
area, such as Bluetooth Low Energy (LE) in combination with a Generic At-
tribute Profile (GATT) or the Internet Protocol (IP) in combination with the
Hypertext Transfer Protocol (HTTP) [1]. Connected devices also exchange data
in different data formats, including JSON, plain text encoded in Unicode, and
binary data. Because of the different communication protocols and data formats
used, the IoT can be considered a heterogeneous field of connected devices.

One approach to overcoming the challenges of heterogeneity in the IoT do-
main is to create semantic interoperability, for instance, through the Web of
Things (WoT) Architecture [12] developed by the World Wide Web Consortium
(W3C). The WoT architecture achieves semantic interoperability by providing
multiple building blocks. One building block is the semantic interface descrip-
tion in the form of RDF graphs [8]. The RDF graph describes available in-
teraction affordances, grouped into properties that expose the internal state
of devices, actions that handle long-running functions, and events that model
asynchronous data pushes from devices. Additionally, the RDF graphs include se-
mantic metadata annotations, such as information about units of measurement,
and natural language annotations through comments or labels. A second building
block of the WoT Architecture are the protocol binding templates [11] available

2 No Author Given

for multiple IoT protocols, such as HTTP, Modbus, or Bluetooth LE [5]. The
bindings define a mapping of concrete protocol methods, such as HTTP GET or
HTTP POST, to abstract WoT methods, such as readProperty or invokeAction.
A third building block is a software implementation called the WoT Script-
ing API [10]. The WoT Scripting API can parse semantic interface description
graphs and use protocol bindings to allow users to implement applications inde-
pendent of the protocol, using only the abstract WoT methods. In addition, the
WoT Scripting API provides data format decoders to convert read IoT data into
in-memory data structures of the WoT Scripting API implementation language.

Within a WoT context, IoT devices are in general called Things and semantic
interface description RDF graphs are called Thing Descriptions (TDs).

1.1 Problem Statement

Despite the semantic interoperability provided by the WoT architecture, devel-
oping applications that use data generated by Things face two major challenges.

1. A user’s end device running the application must support all desired IoT
communication protocols, possibly through hardware adapters for protocols
such as Bluetooth LE or ZigBee. In addition, the end device must be in close
proximity to the Things, as some IoT protocols have limited range [17].

2. The WoT Scripting API only provides data format transformations for a
subset of terms defined by JSON schema1, which means that the Thing
measurements do not provide any additional semantic or natural language
annotations that may partially be present in the TD, such as units, prove-
nance data, or comments, making processing of the IoT data more difficult.

To encourage the adoption of the Web of Things and the development of
WoT applications, there is a need for an accessible, language-independent, and
user-friendly interface that accepts and provides semantically annotated Thing
data, effectively integrating Things into the Semantic Web.

1.2 Approach and Contributions

Therefore, we propose to use a mediator that provides a RESTful Read-Write
Linked Data (RWLD) interface [2], allowing users to access and engage with
the interaction affordances of a Thing, such as reading and writing properties,
invoking actions, and subscribing to events. The mediator acts as an interme-
diary between different communication protocols, mapping them to a RESTful
HTTP interface, while using Semantic Web technologies such as RDF and on-
tologies to transform diverse data formats into FAIR RDF data [18] using the
RDF Mapping Language (RML) [4]. FAIR data means that the data is findable,
accessible, interoperable, and reusable. Adherence to the FAIR data principles
1 https://www.w3.org/TR/wot-thing-description11/
#sec-data-schema-vocabulary-definition

https://www.w3.org/TR/wot-thing-description11/#sec-data-schema-vocabulary-definition
https://www.w3.org/TR/wot-thing-description11/#sec-data-schema-vocabulary-definition

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 3

is important and has been shown to facilitate the development of data analytics
and artificial intelligence applications in both scientific research [16] and indus-
try [6]. In general, the proposed mediator approach separates the logic of a user
application that deals with information processing and control of Things from
the need to support different communication protocols and codecs for parsing,
encoding, and decoding different data formats. As a result, application devel-
opment is simplified by using a common, language-independent interface that
reuses established Semantic Web technologies.

The key contributions of our work are as follows:

– The introduction and formalization of mappings between different IoT pro-
tocols, as well as between semantics in TDs and RML mapping rules.

– The introduction of an ontology to interact with the mediators RWLD in-
terface and the definition of interaction sequences for the mediator.

– The prototypical implementation and empirical evaluation of the perfor-
mance overhead introduced by the mediator.

2 Running Example

To better illustrate the contributions of this work, we use an IoT sensor as
a running example throughout the paper. The interactions offered by the IoT
device and additional metadata are semantically described using a TD, making
it a Thing in the WoT context. The TD graph in turtle serialization describing
the API of the Thing is illustrated in Listing 1.1. The Thing is able to provide
temperature measurements via the property affordance temp (line 16) and offers
a user to activate or deactivate the precision mode using the action affordance
precisionMode (line 27). The temperature measurement data is encoded in
binary format (line 19), and the communication is based on Bluetooth LE in
combination with the Generic Attribute Profile (GATT). GATT uses a server-
client communication model and defines a way to structure data using services
that contain characteristics that can be read using the read method, written
using either write without (w/o) response or write with (w/) response,
or subscribed to using the notify method. In this example, the IoT device acts
as a GATT server (line 13), while the data consumer acts as a GATT client.

In the following sections, we demonstrate how to integrate the sensor Thing
into the Semantic Web. Specifically, we show how to map the Thing’s commu-
nication protocol, Bluetooth LE, to the Web’s communication protocol, HTTP,
and how to convert the binary data exchanged by the Thing, along with rele-
vant metadata, into RDF, the data format for knowledge representation of the
Semantic Web.

3 Related Work

The challenge of integrating IoT devices into the Web or Semantic Web has
been explored in previous studies. This section reviews key contributions and
highlights how our approach builds on and differs from existing methodologies.

4 No Author Given

Listing 1.1. Thing description of a sensor, introduced in the running example, shown
in Turtle serialization. The API is based on an existing Xiaomi Flower Care sensor.

1 @prefix td: <https :// www.w3.org /2019/ wot/td#> .
2 @prefix jschema: <https ://www.w3.org /2019/ wot/json -schema#> .
3 @prefix hctl: <https :// www.w3.org /2019/ wot/hypermedia#> .
4 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
5 @prefix qudt: <https :// qudt.org /2.1/ schema/qudt#> .
6 @prefix sbo:

<https :// freumi.inrupt.net/SimpleBluetoothOntology.ttl#>
.

7 @prefix bdo:
<https :// freumi.inrupt.net/BinaryDataOntology.ttl#> .

8 @prefix sosa: <http :// www.w3.org/ns/sosa/> .
9

10 [] a td:Thing ;
11 td:title "Flower"@en ;
12 td:description "A Xiaomi Flower Care Sensor."@en ;
13 sbo:hasGATTRole sbo:Server ;
14 td:hasPropertyAffordance [
15 a jschema:NumberSchema ;
16 td:name "temp" ;
17 td:description "In degrees Celsius" ;
18 sosa:hasFeatureOfInterest <http ://ex.com/Room404 > ;
19 bdo:pattern "{temp }0000000023 c00fb349b" ;
20 bdo:variables [
21 bdo:bytelength 2 ;
22 bdo:scale 0.1 ;
23] ;
24 td:hasForm [hctl:hasTarget

"gatt ://5C-85-7E-B0 -25-EB/f9b3 /805f9"^^xsd:anyURI]
25] ;
26 td:hasActionAffordance [
27 td:name "precisionMode" ;
28 td:description "Enable precision mode."@en ;
29 td:hasInputSchema [
30 a jschema:IntegerSchema ;
31 bdo:bytelength 1 ;
32] ;
33 td:hasForm [hctl:hasTarget

"gatt ://5C-85-7E-B0 -25-EB/f9b3 /805f9"^^xsd:anyURI]
34] .

Käfer et al. [9] present two methods for connecting sensors and actuators
to the Web. The first method involves a direct connection between devices and
Web resources, using a REST server to provide resource information. The sec-

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 5

ond method uses an intermediary with a sensor/actuator adapter and a client
connector that represents the state of connected devices. Both approaches use
web technologies and linked data to integrate IoT devices into applications.

In contrast, our approach not only integrates IoT devices into the Semantic
Web using the standardized WoT framework, but also uses the information con-
tained in the TDs to create a RESTful API with read-write linked data. This
creates an easy-to-use and machine-readable interface that can be applied to
different devices, improving interoperability and usability.

Noura et al. [13] present the WoTDL2API approach, which uses model-driven
engineering and OpenAPI to automatically generate RESTful APIs for IoT de-
vice control and access. The WoTDL2API method achieves device and platform
interoperability by transforming IoT devices into WoT devices by describing the
interface and mapping the protocols to HTTP. The generated RESTful APIs
are defined in custom ontologies, allowing seamless integration into the WoT
without prior API standardization, thus supporting diverse devices with custom
APIs.

Our approach goes beyond protocol mapping to include mapping various
data formats to RDF. The semantic enrichment of raw data allows information
to be directly processed and interpreted by both humans and machines. By
incorporating RDF, we achieve a higher level of semantic interoperability, making
data more accessible and usable across platforms and applications.

Building on the previous work, our method aims to provide a more com-
prehensive solution for IoT interoperability by not only mapping protocols to
HTTP for easier data access, but also mapping the different data formats to
RDF for easier data processing.

4 Mapping between Protocols using the Web of Things
Abstraction

As a first step, we show how methods from an arbitrary input protocol can be
translated to methods of an arbitrary output protocol via the WoT interaction
methods using WoT protocol bindings. We formalize the mapping approach using
set theory to ensure precision and clarity. Additionally, we provide for each
definition concrete steps applied to the running example to illustrate the mapping
of the input protocol HTTP to the output protocol Bluetooth LE, representing
the interaction from the Web with the Bluetooth LE device.

For the mapping, we introduce three distinct sets IP , W , and OP :

Definition 1 (Input Protocol Methods). Let IP be the set of all interac-
tion methods of the input protocol, where each element represents a different
interaction method.

6 No Author Given

Example 1. In the running example, we consider the HTTP interaction methods
as input, as defined by the HTTP protocol bindings2. The set of input methods
is given by IP = {GET, PUT, POST, GET+LP} where LP stands for long polling.

Definition 2 (WoT Interaction Methods). Let W be the set of all WoT
interaction methods3, where each element represents a different WoT interaction
method.

Example 2. As a next step, we define the WoT interaction methods as an in-
termediate representation to map from HTTP to Bluetooth LE. To demon-
strate the approach, we focus on the four basic WoT interaction methods, i.e.,
W = {readProperty, writeProperty, invokeAction, subscribeEvent}.

Definition 3 (Output Protocol Methods). Let OP be the set of all inter-
action methods of the output protocol, where each element represents a different
interaction method.

Example 3. In the running example, our output set consists of the corresponding
Bluetooth LE interaction methods [5], i.e., OP = {read, write w/o response,
write w/ response, notify}.

Given the sets IP , W , and OP , the correspondence to and from the WoT
interaction methods is given by the functions f1 and f2, defined as follows:

Definition 4 (Input to WoT). Let f1 : IP → M be the mapping function
from the input protocol methods to the WoT interaction methods.

Example 4. In the running example, the function f1 describes the mapping from
HTTP methods to WoT methods, therefore f1 is defined as the set of ordered
pairs f1 = {(GET, readProperty), (PUT, writeProperty), (POST, invokeAction),
(GET+LP, subscribeEvent)}.

Definition 5 (WoT to Output). Let f2 : M → OP be the mapping function
from the WoT interaction methods to the output protocol methods.

Example 5. In the running example, the function f2 describes the mapping from
WoT methods to Bluetooth LE methods [5], the function f2 is therefore defined
as the set of ordered pairs f2 = {(readProperty, read),
(writeProperty, write w/o response), (invokeAction, write w/ response),
(subscribeEvent, notify)}.

The mapping from the set of input protocol methods IP to the set of output
protocol methods OP is given by the composite mapping function h = f2 ◦ f1
defined as follows:
2 https://w3c.github.io/wot-binding-templates/bindings/protocols/http/
#http-default-vocabulary-terms

3 https://www.w3.org/TR/wot-thing-description11/
#table-well-known-operation-types

https://w3c.github.io/wot-binding-templates/bindings/protocols/http/#http-default-vocabulary-terms
https://w3c.github.io/wot-binding-templates/bindings/protocols/http/#http-default-vocabulary-terms
https://www.w3.org/TR/wot-thing-description11/#table-well-known-operation-types
https://www.w3.org/TR/wot-thing-description11/#table-well-known-operation-types

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 7

Definition 6 (Composite Mapping Function). Let h be the mapping func-
tion from IP to OP , given as h(i) = f2(f1(i)) ∀ i ∈ IP , with f1 and f2 as defined
in Definitions 4 and 5.

Example 6. In the running example, the mapping is performed form the input
protocol HTTP to the output protocol Bluetooth LE, which means, that the
function h is given by following statements:

h(GET) = f2(f1(GET)) = f2(readProperty) = read

h(PUT) = f2(f1(PUT)) = f2(writeProperty) = write w/o response

h(POST) = f2(f1(POST)) = f2(invokeAction) = write w/ response

h(GET+LP) = f2(f1(GET+LP)) = f2(subscribeEvent) = notify

The statements demonstrate that the composite mapping function h pro-
duces the correct mapping between the methods of the protocols HTTP and
Bluetooth LE, consisting of the tuples:

h = {(GET, read), (PUT, write w/o response), (POST, write w/ response),
(GET+LP, notify)}.

The mapping is lossless and reversible as long as there exists a clear one-to-
one correspondence between each protocol method and the respective abstract
WoT interaction method.

5 Generating RML mapping rules using semantic
information from WoT Thing Descriptions

After introducing an approach to map different protocols using the WoT methods
as an intermediate representation in the previous section, we now present how
to map the relevant information contained in WoT TDs to an RML mapping
rule. The mapping rules allow various non-RDF data formats to be converted
to RDF by specifying how the resulting RDF data should be structured and
which ontologies should be used. By generating these RML mapping rules, we
can transform data into RDF in a transparent and deterministic way.

First, we define a TD graph, which describes the API of an associated IoT
device using property affordances, action affordances, and event affordances.

Definition 7 (Thing Description Graph). Let P , A, and E be the sets of
all property, action, and event affordances of a device, respectively. A Thing
Description Graph, GTD, is the union of these sets of interaction affordances:
GTD = P ∪A ∪ E.

Example 7. In the running example, we have one property affordance called
temp, and one action affordance called precisionMode. Therefore the set P is
given by P = {temp} and the set A is given by A = {precisionMode} while
the set E is the empty set. Therefore, GTD is given by GTD = P ∪ A ∪ E =
{temp} ∪ {precisionMode} ∪ ∅ = {temp, precisionMode}.

8 No Author Given

Next, we define an interaction affordance I in the set of all interaction af-
fordances, i.e. the Thing Description Graph GTD. An interaction affordance I
contains information about the datatype of the exchanged data and the set of
additional semantic annotations.

Definition 8 (Interaction Affordance). An interaction affordance I is a tu-
ple, I = (d, S), contained in a Thing Description Graph, I ∈ GTD. Each inter-
action affordance I consists of:

– a datatype annotation d ∈ D, where D = {ArraySchema, BooleanSchema,
NumberSchema, IntegerSchema, ObjectSchema, StringSchema, NullSchema},

– a set of semantic annotations S containing all semantic annotations in triple
format.

Example 8. In the running example, the first interaction affordance I1 (i.e. temp)
contains the datatype element d1 = NumberSchema and the semantic annotation
set S1 = {([], sosa:hasFeatureOfInterest, <http://ex.com/Room404>)}.
Thus, I1 is given as I1 = (NumberSchema, {([], sosa:hasFeatureOfInterest,
<http://ex.com/Room404>)}).

After defining the Thing Description Graph and an interaction affordance,
we now define the second part needed for the mapping: the RML mapping rule.
In RML, so-called TriplesMaps define how non-RDF source data is mapped to
RDF by specifying ontologies and the structure of triples. An RML mapping
rule can contain multiple TriplesMaps.

Definition 9 (RML Mapping Rule). Let R be the set of all TriplesMaps,
where each TriplesMap describes how a different part of the output RDF data is
generated. We call the set R the RML mapping rule.

In SemWoT, we use a template-based approach, i.e., we have different Triples-
Map templates that describe a mapping of Thing data using the SOSA/SSN
ontology to model observations, the PROV-O ontology to model provenance
information, and, if applicable, the QUDT ontology to model units of measure-
ment. We define the RML template as follows:

Definition 10 (RML Mapping Rule Template). Let T be the set of all
TriplesMap templates t, where each TriplesMap template t describes how a dif-
ferent part of the output RDF data is generated.

Example 9. In the running example, we have TripleMap templates for the mea-
surement result tr and the semantic annotations tS . Therefore, in the run-
ning example T is given by T = {tr, tS}

Finally, we fill in the templates with the information for the corresponding
interaction affordance. This process generates the final RML mapping rule, which
can then be executed by an RML interpreter to produce RDF data.

Definition 11 (Generating RML Mappings). Let g1 : I × T → R be the
mapping function that combines the interaction affordance set with the mapping
template set to create the final RML mapping rule.

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 9

6 A SemWoT Mediator

Both the protocol mapping and the TD to RML mapping introduced in the pre-
vious sections are combined in our SemWoT approach. SemWoT integrates WoT
devices into the Semantic Web by making data accessible via HTTP, regardless
of the IoT protocol used by the device, and by making data available in RDF,
regardless of the data format provided by the device.

In software development, the Mediator pattern [7] is used when a software
component acts as a central interface between two otherwise incompatible com-
ponents. This pattern mediates between system objects, allowing information to
be exchanged despite data and functional incompatibilities. Therefore, we call a
software implementing the SemWoT approach a SemWoT mediator.

A SemWoT mediator implements the mediator pattern with two interfaces:
one for clients on the Semantic Web via a RESTful API that accepts and returns
RDF data, and one for sensors and actuators using the WoT. Figure 1 shows
the abstract representation of a SemWoT mediator.

WoT
Scripting API

WoT
Protocol Bindings

Codecs

SemWoT Mediator

Actor

TDRESTful
API

<value>

WoT.operation()HTTP Request

RDF

IoT Device

Fig. 1. Architectural structure of the SemWoT mediator

A SemWoT mediator uses the WoT Scripting API to interact with IoT devices
through abstract WoT operations such as reading properties, writing properties,
invoking actions, and subscribing to events [10]. The Scripting API uses a TD
to create an instance of the Thing for these interactions. On the client side,
the SemWoT mediator provides a RESTful API that allows HTTP requests
to a Thing. The RESTful API is derived from the TD, with the access path
consisting of the HTTP protocol scheme, followed by the authority consisting of
mediator IP address and port, and finally the path consisting of sensor name,
and affordance name [3]. For instance, in the running example, the URI of the
temp property is given by "http://<IP>:<port>/Flower/temp".

To implement a RESTful Read-Write Linked Data interface on the SemWoT
mediator, we need an ontology to describe tasks and interaction invocations,

10 No Author Given

as well as a clear definition of interaction sequences for all interactions. The
following subsections describe these aspects.

6.1 Interaction Invocation Ontology

We created a simple RDFS ontology to model the interaction patterns and func-
tionalities in the context of a SemWoT mediator, following the LOT methodol-
ogy [14] and used the Ontology Pitfall Scanner [15] for validation. A new ontol-
ogy is required because the existing TD ontology only allows describing available
interaction affordances, not that a concrete interaction affordance should be in-
voked, which we want to enable. The resulting ontology, called the Actionable
IoT Ontology, uses the prefix aio and aims to describe the invocation of in-
teraction affordances that a SemWoT mediator should perform. An RDF graph
describing the activation of the precision mode with an input value of 1, based
on the running example, is shown in listing 1.2.

Listing 1.2. The aio ontology describing the activation of the precision mode.

1 @prefix aio: <https :// solidweb.me/anon/sbo/aio.ttl#> .
2 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
3 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
4
5 [] rdf:type aio:ActionInvocationInteraction ;
6 aio:hasInvocationInput [
7 rdf:value "1"^^xsd:integer
8] .

The central class in the aio ontology is InteractionInvocation, which has
three subclasses to describe different types of interaction: the invocation of a
writeProperty, the invocation of an Action, and the invocation of an Event sub-
scription. readProperties do not need a separate class because the read operation
can be invoked using an HTTP GET request without a body, and therefore no
detailed descriptions are required. In addition to classifying interactions, the on-
tology also defines a property called aio:hasStatus, which is used to indicate the
current state of a triggered WoT action. For example, after initialization, the sta-
tus changes from initializing to running, and after completion, the status updates
to finished. The ontology also associates interactions with their input and output
information, such as datatypes and values, using the hasInvocationInput and
hasInvocationOutput properties. Additional properties and classes have been
reused from well-known ontologies such as SOSA/SSN and QUDT.

The Widoco documentation and the RDF data of the ontology can be found
online4.
4 https://solidweb.me/anon/sbo/aio.html

https://solidweb.me/anon/sbo/aio.html

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 11

6.2 Reading and Writing Properties

Client SemWoT
Mediator Thing

HTTP GET

WoT.readProperty()

<value>

return RDF

Client SemWoT
Mediator Thing

HTTP PUT

WoT.writeProperty()

success

return RDF

Fig. 2. Reading (left) and writing (right) of a WoT property using a SemWoT mediator
as intermediary.

RESTful access to WoT properties allows information to be read from and
written to a Thing. Property operations are near-instantaneous and can be
pushed directly to the Thing through the mediator.

To read a WoT property of a Thing, a client sends an HTTP GET request
to the mediator. The mediator maps the GET request to the Thing’s protocol
using the method introduced in section 4 and performs a read operation. Once
the Thing returns the result, the mediator maps the data to RDF by filling in an
RML mapping template using the approach described in section 5 and executes
the mapping. The RDF data is then returned to the client via HTTP. The UML
sequence diagram for reading a property is shown on the left side of Fig. 2.

To write a WoT property, a client sends an HTTP PUT request containing
the task description in RDF using the aio ontology to the SemWoT mediator.
The mediator extracts the task using SPARQL and translates the request into a
write operation for the Thing’s protocol. Once the data is successfully written,
RDF data indicating a successful write operation is returned to the client. The
UML sequence diagram for writing a property is shown on the right side of Fig. 2.

6.3 Invoking Actions

RESTful invocation of WoT actions is more complicated than simply reading or
writing WoT properties, because WoT actions are long-running operations that
do not return immediately.

To invoke a WoT action, a client sends therefore an HTTP POST request
containing RDF data describing the action to be performed to the SemWoT
mediator, which returns a location header. Meanwhile, the SemWoT mediator
invokes the action on the Thing. The client can periodically check the status of

12 No Author Given

Client SemWoT
Mediator Thing

HTTP POST

WoT.invokeAction()

success

Location: /actions/5

HTTP GET
/actions/5

return RDF
status: "running"

HTTP GET
/actions/5

Client SemWoT
Mediator Thing

HTTP POST

WoT.subscribe()

Emit Event

Emit Event

Location: /events/7

HTTP GET
/events/7

return RDF

HTTP DELETE
/events/7

WoT.unsubscribe()return RDF
status: "finished"

204

Fig. 3. Invoking a WoT action (left) and subscribing/unsubscribing from a WoT event
(right) using the SemWoT mediator as an intermediary.

the action by polling the newly created RDF resource as defined by the location
header. Once the WoT action has been successfully executed, the status in the
RDF document changes from running to finished. The UML sequence diagram
for invoking a WoT action is shown on the left side of Fig. 3.

6.4 Subscribing to Events

Subscribing and unsubscribing to WoT events in a RESTful manner is adjusted
to handle the asynchronous nature of events. To subscribe to a WoT event,
a client uses an HTTP POST request that contains RDF data that defines
the specific event to subscribe to. The request creates a resource on the WoT
mediator, and the client receives a new URI via the location header in the
response. Meanwhile, the mediator subscribes to the specified event offered by a
particular Thing. Once the Thing emits an event, the received data is mapped to
RDF using RML, and the corresponding resource is updated. The client can use
HTTP GET requests on the RDF resource to retrieve the latest emitted event
data. To unsubscribe from the WoT event source, a client can send an HTTP
DELETE request to the resource and the SemWoT mediator will unsubscribe
from the event source of the Thing.

One risk associated with this approach is that events may be emitted more
frequently than the client reads the RDF resources containing the event data.
This can lead to missing event data from the client’s perspective since only the
latest event data is kept in the RDF resource. To mitigate the risk, the client
needs to increase the polling rate.

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 13

The UML sequence diagram for subscribing and unsubscribing from a WoT
event is displayed on the right side of Fig. 3.

7 Empirical Evaluation

In the empirical evaluation, we assess the request overhead introduced by the
WoT mediator by comparing the execution time of direct access to a Thing’s
interaction affordances with access through the SemWoT mediator. To per-
form the evaluation, we implemented a SemWoT mediator as a prototype in
JavaScript using the express.js framework to provide the RESTful API and node-
wot to interact with Things using the WoT abstraction. Additionally, we imple-
mented Things based on HTTP to allow easier evaluation of the performance.
All code is open source and available at https://anonymous.4open.science/
r/SemWoT-Mediator-C518/. For the hardware setup we used two Raspberry Pi
3Bs running Raspberry Pi OS, one to host the Things and one to host the medi-
ator, and a notebook running Windows 10 as the client. All three devices were
connected to the same wifi network.

We evaluated the performance of reading and writing properties, as well as
invoking actions. However, we did not evaluate the performance of subscribing
to events, because the relevant metric for events is not the subscription time,
but the time from when the event is emitted by the device to when the data
is available to the client. Due to the distributed nature of the system, precise
time measurements were not possible, making it difficult to obtain consistent
and reliable results. Therefore, we focused our evaluation on operations where
timing could be accurately assessed.

Reading Properties The first diagram in Fig. 4 shows the response times
for the readProperty operation. Direct access ranged from 14 to 23 ms, while
access through the SemWoT mediator ranged from 41 to 60 ms.

Writing Properties The second diagram in Fig. 4 shows the writeProperty
operation. Direct access response times ranged from 23 to 33 ms, while using
the SemWoT mediator ranged from 39 to 52 ms.

Invoking Actions The third diagram in Fig. 4 shows the invokeAction
operation, invoking a function with a processing time of 50 ms. Direct access
times ranged from 71 to 82 ms, while using the SemWoT mediator increased
response times to 112 to 129 ms.

Discussion The results show that while the SemWoT mediator introduces
additional overhead in terms of response time due to processing tasks such as
protocol translation and RML mapping generation and execution, the mediator
maintains consistent performance. The overall consistency is beneficial for appli-
cations that require predictable timing. The trade-off between increased response
times and the benefits of self-describing data and protocol abstraction provided
by the SemWoT mediator must be considered based on the specific requirements
of the application. For applications where minimal latency is critical, direct ac-
cess may be preferable. However, for applications that require the flexibility of
using HTTP to access a WoT device and benefit from the additional semantic

https://anonymous.4open.science/r/SemWoT-Mediator-C518/
https://anonymous.4open.science/r/SemWoT-Mediator-C518/

14 No Author Given

0 5 10 15 20 25
0

50

100

150

200

Request Number

R
es

po
ns

e
T

im
e

[m
s]

WoT readProperty

0 5 10 15 20 25
0

50

100

150

200

Request Number

WoT writeProperty

0 5 10 15 20 25
0

50

100

150

200

Request Number

R
es

po
ns

e
T

im
e

[m
s]

WoT invokeAction

Direct Access SemWoT Mediator

Fig. 4. Response times of different WoT operations comparing direct access to access
using the mediator.

information provided by the SemWoT mediator, the additional overhead may be
justified.

8 Conclusion and Future Work

In this paper, we introduced SemWoT, an approach that addresses the challenge
of IoT data access by requiring only HTTP protocol support and eases further
processing of gathered IoT data by making the data self-describing through the
use of semantics. We developed a mediator that implements the mappings intro-
duced by the SemWoT approach, defined interaction sequences for the mediator,
and introduced the aio ontology to describe interaction invocations, enabling the
direct integration of Things into the Semantic Web. Our evaluation showed that
while the overhead added by the SemWoT mediator is relevant, it is consistent
and does not fluctuate, providing a trade-off between ease of data access and
processing versus request time. Future work will explore more advanced tech-
niques for evaluating event data exchange performance, further optimizations to
reduce mediator overhead, and the setup of a real-world, multi-sensor testbed
for long-term testing.

SemWoT: Integrating W3C Web of Things Devices into the Semantic Web 15

References

1. Balaji, S., Nathani, K.o.: IoT technology, applications and challenges: a contem-
porary survey. Wireless personal communications 108, 363–388 (2019)

2. Berners-Lee, T.: Read-write linked data. https://www.w3.org/DesignIssues/
ReadWriteLinkedData.html (2018)

3. Berners-Lee, T., Fielding, R.T., Masinter, L.M.: Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (Jan 2005). https://doi.org/10.17487/RFC3986,
https://www.rfc-editor.org/info/rfc3986

4. Dimou, A., Vander Sande, M., Colpaert, P., et al.: RDF Mapping Language (RML).
Specification proposal draft (2014)

5. Freund, M., Dorsch, R., Harth, A.: Applying the Web of Things Abstraction to
Bluetooth Low Energy Communication. arXiv preprint arXiv:2211.12934 (2022)

6. Freund, M., Rott, J., Dorsch, R., et al.: FAIR Internet of Things Data: Enabling
Process Optimization at Munich Airport. In: European Semantic Web Conference.
Springer (2024)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Pearson Deutschland GmbH (1995)

8. Kaebisch, S., McCool, M., Korkan, E., Kamiya, T., Charpenay, V., Kovatsch,
M.: Web of Things (WoT) Thing Description 1.1. https://www.w3.org/TR/
wot-thing-description/ (2023)

9. Käfer, T., Bader, S.R., Heling, L., Manke, R., Harth, A.: Exposing internet of
things devices via rest and linked data interfaces. In: Proc. 2nd workshop semantic
web technol. Internet Things. pp. 1–14 (2017)

10. Kis, Z., Peintner, D., Aguzzi, C., Hund, J., Nimura, K.: Web of Things (WoT)
Scripting API. https://www.w3.org/TR/wot-scripting-api/ (2023)

11. Koster, M., Korkan, E.: Web of Things (WoT) Binding Templates. https://www.
w3.org/TR/wot-binding-templates/ (2024)

12. Lagally, M., Matsukura, R., McCool, M., Toumura, K., Kajimoto, K., Kawaguchi,
T., Kovatsch, M.: Web of Things (WoT) Architecture 1.1. https://www.w3.org/
TR/wot-architecture/ (2023)

13. Noura, M., Heil, S., Gaedke, M.: Webifying heterogenous internet of things devices.
In: Web Engineering: 19th International Conference, ICWE 2019, Daejeon, South
Korea, June 11–14, 2019, Proceedings 19. pp. 509–513. Springer (2019)

14. Poveda-Villalón, M., Fernández-Izquierdo, A., Fernández-López, M., García-
Castro, R.: Lot: An industrial oriented ontology engineering framework. Engineer-
ing Applications of Artificial Intelligence 111, 104755 (2022)

15. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops!(ontology pit-
fall scanner!): An on-line tool for ontology evaluation. International Journal on
Semantic Web and Information Systems (IJSWIS) 10(2), 7–34 (2014)

16. Scheffler, M., Aeschlimann, M., Albrecht, M., et al.: FAIR Data Enabling New
Horizons for Materials Research. Nature 604(7907), 635–642 (2022)

17. Tosi, J., Taffoni, F., Santacatterina, M., et al.: Performance Evaluation of Blue-
tooth Low Energy: A Systematic Review. Sensors 17(12), 2898 (2017)

18. Wilkinson, M.D., Dumontier, M., et al.: The FAIR Guiding Principles for Scientific
Data Management and Stewardship. Scientific data 3(1), 1–9 (2016)

https://www.w3.org/DesignIssues/ReadWriteLinkedData.html
https://www.w3.org/DesignIssues/ReadWriteLinkedData.html
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC3986
https://www.rfc-editor.org/info/rfc3986
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/

	SemWoT: Integrating W3C Web of Things Devices into the Semantic Web

