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nlike conventional sequential programs, the computations performed by 
distributed computing systems d o  not yield a linear sequence of events. 
The  interrelationships between the events performed in a distributed 

system inherently define a partial ordering-genuinely concurrent events have no 
influence o n  one  another.  

In the past, designers have typically used a simplified view of distributed 
computations, imposing an  interleaved total ordering o n  the events performed. 
However, new computing concepts now let us use the full partial ordering of events 
as defined by their  causal relationships, that  is, the ability of one  event to  directly. 
or transitively, affect another.  In this article I define this partial ordering, describe 
its generalized and  practical implementations in terms of partially ordered logical 
clocks, and summarize some current applications of the new technology. 

Definition 

For a system using both asynchronous and synchronous message-passing and 
process-nesting, the  causal relationships between events in a distributed compu- 
tation a re  captured as follows 

The  relation “happened before,” denoted +, is the smallest relation satisfying 
the six conditions listed below It  is an irreflexive, transitive relation among the 
events performed during a given computation. A n  event is a uniquely identified 
runtime instance of an  atomic action of interest, and a computation is a particular 
run or execution of the distributed computing system A computation consists of 
one  or more possibly nested process instances, which are uniquely identified 
runtime instantiations of a particular process definition 

Condition 1. Sequential behavior If events  e a n d f o c c u r  in the  same process 
instance p ,  a n d  f occurs a f te r  e ,  then  e + f 

Condition 2 Process creation I f  event  e a n d  process instance q occur in 
process instance p ,  e v e n t f o c c u r s  in q,  a n d  q begins a f te r  e ,  then  e +f 

Condition 3 Process termination If event  e a n d  process instance q occur 
in process instance p ,  event  f occurs in q,  a n d  e occurs a f te r  q terminates.  
t h e n  f 4 e 

Ordered 

logical clocks can 
provide a decentralized 

distributed computing 
systems, which lack a 

common time base. 

definition of time for 
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Condition 4: Synchronous (unbuf- 
fered) message-passing. If event e is a 
synchronous input (output) and event 
f is the corresponding output (input), 
and there is an  event g such that e -+ g, 
then f + g. If there is an  event h such 
that h + e,  then h -+ f. 

Condition 5: Asynchronous (buf f -  
ered) message-passing. If event e is an 
asynchronous send, and event f is the 
corresponding receive, then e -+ f .  

Condition 6: Transitivity. I f  e + f 
and f -+ g,  then e + g .  

An event e “occurs in” a process 
instance p if p executes e. A process 
instance q occurs in a process instance 
p if q is a subprocess of p .  “After” is 
used only when referring to  actions 
that occur within a single process in- 
stance. Each process consists of a se- 
quence of actions.’ 

Partially ordered 
logical clocks 

Figure 1 shows a computation per- 
formed by a distributed program P. 
Shortly after it starts executing, P 
spawns two process instances Q and R. 
All three processes perform a number 
of events. Some are  actions internal to  
a process, such as  E, or a re  communica- 
tion actions such as  G. (For clarity I 
treat  process creation and  termination 
as  special cases, although it is possible 
t o  consider these actions as synchro- 
nizing events.) After performing event 
H, process R creates two processes S 
and T, and suspends itself during the  
lifetime of its offspring. Processes P 
and S communicate via synchronous 
message-passing; event F outputs a 
message that is simultaneously input 
by event I. Processes P and Q commu- 
nicate via asynchronous message-pass- 
ing; event G denotes the sending of a 
message later received by event C. 

After processes S and T terminate. 
process R resumes execution and per- 
forms event L. After processes Q and 
R terminate, the  main program, pro- 
cess P, performs a final event M, and 
the computation ends. 

Partially ordered logical clocks char- 
acterize all interrelationships between 
these events. In Figure 1 the  annota- 
tion a t  each event shows the partially 
ordered time a t  that  point in the  com- 

R., 

F 

Process Q 

Process P 

Figure 1. A distributed computation. Expressions in braces show the partially 
ordered time at each event. Solid arrows represent flow control; dotted arrows 
show interprocess communication. 

putation. I explain the  maintenance and 
use of this information below. 

Notation. Because the time readings 
must b e  partially ordered, a single inte- 
ger o r  real value is inadequate as a da ta  
structure. Assume tha tp ,  denotes a pro- 
cess instance uniquely identified by i. 
We can represent a partially ordered 
time reading made  by p ,  with a set of 
pairs 

Here  each pair consists of a process 
instance identifier j and a numerical 
“counter” value n, representing the  val- 
ue of the  counter inp,  as perceived byp,. 
Each process thus maintains knowledge 
of the counters in all other processes of 
which it has heard. Process instances 

not represented in the set  have the de- 
fault counter value 0. 

Assume that e,  represents a unique 
event e performed by process instance 
p , ,  and t?, is the time stamp attached t o  
some permanent record of the execu- 
tion of this event. Then  t?,G) is the value 
of the counter for p ,  in this time stamp. 

For  example. in Figure 1. 

is the time when process P performed 
event G. (Because event names a re  
unique in Figure 1, I omit the process 
identifier subscripts: G is equivalent to  
Gp.) From this we can determine the 
“local” counter value for process P a t  
that  time, 

t,,(P) = 4 

August 1991 29 

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore.  Restrictions apply. 



and the last known value for process S, 

t t i(S) = 1 

When it performed event G, process P 
had received no information from pro- 
cess Q, hence 

tti(Q) = 0 

A handy function in the  following 
definitions is max. Given one  or more 
partially ordered time readings, max 
returns a time reading in which every 
counter is set  t o  the maximum of all 
corresponding values in the arguments 
presented to  it, for example, 

max({( i ,2 ) ,  0‘,1), (k,3)1, {(i ,4),  (k1)I) 
= {(i ,4),  0’JL (k,3)1 

The counter for pl has the default value 
0 in the  second argument t o  max above. 

Rules. A computation can maintain a 
partially ordered logical clock using nine 
rules.* For the  rules below to  apply, 
each process instance p ,  created during 
the  lifetime of the  computation (includ- 
ing the  outer-level main program) must 
maintain an  auxiliary variable c, to  hold 
the  current partially ordered time as 
perceived by p,. 

Rule A: Initialization. When the pro- 
gram begins execution, the time is ini- 
tialized to  the empty set, that  is, cm := [ I ,  
where m is the process instance identi- 
fier associated with the  main program. 

Since zero-valued counters a re  implicit, 
[ ]  is equivalent to  the infinite set [(i,O), 
G,O), ...I for every possible process iden- 
tifier. 

Rule B: Ticking. Whenever a pro- 
cess instance p ,  performs an  event, it 
increments c , ( i )  a t  least once. 

For instance, in performing event D, 
process Q increments its own counter 
from 2 t o  3. 

In Figure 1 each counter has been  
incremented exactly once for each event 
performed. However, the  rules a re  val- 
id for any number of “ticks,” as long as 
the  counters never decrease. 

Rule C: Monotonically increasing 
counters. No counter in any c, is ever 
decremented. 

Rule D: Process creation. Whenever 
a process instance p,  creates a set of 

Because the time readings 
must be partially ordered, a 
single integer or real value 

is inadequate as a data 
structure. 

process instances p ,,..., p i ,  they each in- 
herit the  current t ime from p,,  that  is, 
Vx:b ... 11 . c, := e,. 

Thus, when process R spawns process- 
es S and T ,  they both learn that the 
counters for P and R have value 1. They 
also create pairs for  themselves the  first 
time they each perform an  event (K and 
1). 

Rule E: Process termination. When- 
ever a set of process instances p,, . . . ,pi  
terminates, the parent process instance 
p, merges all the children’s logical clocks 
by maximizing the  counter values, that  
is, c, := max(c,,c ,,..., e,). 

In  this way process R learns of all activ- 
ity known to  its offspring S and T when 
they  te rmina te  (including u p d a t e d  
knowledge of process P). The  main pro- 
gram P (which cannot terminate until 
all processes it has created have termi- 
nated) similarly learns from the demise 
of Q and R. 

Rule F: Synchronous events. Dur- 
ing a synchronizing event,  all process 
instances involved @,,...,PO maximize 
their local clocks using the counters 
from every other participating process 
ins tance ,  t ha t  is ,  V x : [ j  ... l }  . c, := 
max(c,, ..., e,). A computation applies this 
rule only after any increments required 
by rule B. 

Thus, during the synchronous message- 
passing action represented by events F 
and I, process S learns of the time in 
process P and vice versa: Logical time 
information is exchanged in both direc- 
tions (hence the  double-headed arrow 
in Figure 1). This happens because the 
synchronization resulting from unbuf- 
fered message-passing is symmetric: 
Both sender and receiver block. Figure 
1 shows only a biparty interaction, but 

rule F allows for any number of syn- 
chronizing processes. 

A s y n c h r o n o u s  communica t ion  is 
asymmetric (only receivers block) and 
hence requires two rules: 

Rule G: Sending. Whenever a pro- 
cess instance p ,  sends a message, that 
message carries the current value of c,. 
A process applies this rule only after 
any increments required by rule B. 

Rule H: Receiving. Upon receiving a 
message, the receiving process instance 
p, maximizes its counter values using 
those received in the piggybacked t ime 
stamp c,,,,,,,~~, that  is, c, := max(cl, c,~,,,,,~). 

Thus event C allows process Q t o  learn 
of those events known to  process P when 
event G was performed. Although Fig- 
ure 1 shows only a biparty communica- 
tion, these rules also apply t o  broadcast 
messages. 

T h e  logical clock information is al- 
ways piggybacked onto  existing com- 
munication pathways and thus must re- 
flect the structure of the computation. 

Rule I:  Time-stamping. T h e  time 
stamp re,, associated with the execution 
of event e, by process instance p z ,  is the  
value of c, immediately following the 
application of rules B through H. 

Finally, with these rules in place, we 
can determine the “happened before” 
relations using the comparison proper- 
ty of such time stamps: 

Comparison property. Given two 
time stamps t?, and t6, event e, happened 
before eventf, if and only if t6 has knowl- 
edge of processp, as recent as  the  execu- 
tion of e,, but not vice versa, that  is, 

W e  need t o  compare only two pairs 
from the  sets to  establish whether there 
is a causal relationship between the two 
events. The  first comparison is true if 
and only if e, can causally affect 6. The 
second comparison precludes reflexivi- 
ty because it would be nonsensical to  
say that an  event happened before it- 
self.’ (Because synchronously commu- 
nicating processes may independently 
time-stamp their part of a shared event, 
as d o  F and I in Figure 1, it may not 
always be easy t o  directly test e, f f,.) 

Elsewhere I have formally shown that 
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these rules a re  sufficient t o  implement 
the “happened before” relatiom2 T h e  
rules a re  robust enough for asynchro- 
nous message “overtaking” (that is, non- 
F I F O  queuing of messages destined for 
a particular process instance). T h e  rules 
also preserve the  equivalence between 
asynchronous message-passing and syn- 
chronous message-passing with an  in- 
tervening buffer process, and between 
synchronous message-passing and a sin- 
gle event shared among the  communi- 
cating processes. 

A s  Figure 2 shows, substituting the  
appropriate counter values from the time 
stamps into the formula from the  com- 
parison property establishes the  rela- 
tionships defined by the  computation in 
Figure 1. T h e  final category in Figure 2 
shows the principal advantage of par- 
tially ordered logical clocks over previ- 
ous time-stamping methods.’ Where no 
causa l  re la t ionship  exists be tween 
events, no arbitrary ordering is imposed 
on them. Thus  we can tell, for instance, 
that  events K and J could occur in either 
order,  o r  a t  exactly the same time. Even 
though Figure 1 suggests that  K oc- 
curred before J in real time (taking a 
line drawn horizontally through the di- 
agram to  represent an  instant in global 
real time), the  logical behavior of the  
computation does not enforce this tem- 
poral ordering. A slightly different in- 
terleaving of the same computation may 
result in J occurring before K. (Think of 
thedots inFigure  1 as  beads free toslide 
u p  and down the time lines, as long as 
they d o  not violate causality by, for 
example, causing communication arrows 
t o  point backward.) 

Optimizations 

In their full generality, as described 
in the previous section, partially ordered 
logical clocks may b e  impractically ex- 
pensive for long-lived computations. For 
instance, the rules placed no upper bound 
on the  size of the set  of pairs, and  their 
number was limited only by the number 
of process instances created a t  runtime. 
Nevertheless, several optimizations a re  
possible, depending on the application 
environment in which the clocks will be 
used. 

Static number of processes. Where 
there is no process-nesting, and the sys- 
tem knows the number of processes to  
be created a t  compile time, the “set of 

Tests for e -+ f where 

e and f a r e  the  same event: 
( 2 < 2 ) A ( 2 4  2) 3 , ( c + c )  

e and f are  different events in the same process: 
( 1 5 3 ) ~ ( 1 < 3 )  3 B + D  
(2 9 1) A (2 d 1) 3 T ( C  + B) 

e and f are in different processes with a n  intervening communication 
action: 

( 2 < 4 ) ~ ( 0 < 3 )  3 E - + D  
( 2 9 0 ) ~ ( 3 d 2 )  3 , ( J + E )  

e is in a subprocess of the  process containing f o r  vice versa: 
( 1 5 1 ) ~ ( 0 < 2 )  3 H + J  
( 5 9 3 ) ~ ( 2 d 1 )  3 - I ( M + I )  

e a n d f a r e  different parts of a synchronous communication event: 
( 3 5 3 ) ~ ( 1 d 1 )  3 , ( F + I )  
(1 2 1) A (3 d 3) 3 ~ ( 1  + F )  

e a n d f a r e  “potentially concurrent”; that  is, there is no causal relationship 
between them: 

( 2 g O ) A ( 1 < 2 )  3 - I ( C + J )  
( 2 4 1 ) A ( 0 < 2 )  3 y ( J + C )  
( 1 9 0 ) A ( 0 < 2 )  * y ( K + J )  
( 2 $ 0 ) A ( 0 < 1 )  ;j , ( J + K )  

Figure 2. Some “happened before” relationships defined between two arbitrary 
events e andfby the time stamps in Figure 1. 

pairs” da ta  structure is unnecessary. 
Instead, each process can use an  array 
of counters, with one  element reserved 
per process.z 

This frequently used optimization is 
known as “vector time”) because each 
clock reading is a vector (array) of 
counter values. It has the obvious ad- 
vantage of placing a n  upper bound on 
the storage requirements for the auxil- 
iary clock variables. In a formal proof, 
Charron-Bost demonstrated that a vec- 
tor of length n is minimal for n static 
p r o c e ~ s e s . ~  

The  vector-time optimization can be 
applied to  languages with nested con- 
currency if they d o  not  allow recursive 
process definitions.’ This restriction 
means that only one  instance of each 
static process definition can execute a t  
any given time. T h e  system can deter-  
mine from the source code the maxi- 
mum number of runtime process in- 
stances simultaneously executing and 
reserve only one  vector element for each. 
Every time a particular process defini- 
tion is instantiated. it uses the same 

element in the logical clock vector, be- 
cause no other copies of itself a re  cur- 
rently running. 

Comparisons known a priori. So far 
we have assumed that the computation 
maintains counters for every process 
instance. However, if we know in ad- 
vance the processes that contain the  
events we wish t o  study, then we need t o  
keep counter values only for those pro- 
 cesse^.^ Nevertheless, other “uninter- 
esting” processes must still maintain a n  
auxiliary clock variable and transfer in- 
formation a t  communication events. 
Otherwise, the  partial ordering may fail 
to  correctly reflect transitive interpro- 
cess dependences. All processes and all 
synchronizing actions in a computation 
must actively participate.’ 

Only new values piggybacked. When 
the number of processes in the vector- 
time model is large, the  transmission of 
the clock arrays during message-pass- 
ing represents a significant overhead. 
In such cases each process can main- 
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tain, via two further auxiliary arrays. 
the value of the ‘‘local’’ counter when a 
vector was last sent to  each other pro- 
cess, and when each counter for other 
processes was last updated. Using this 
information, the  process can piggyback 
on an  outgoing message only those 
counter values that have been modified 
since the last communication with the 
target process, assuming message over- 
taking is precluded.6 

Implementations and 
applications 

Partially ordered logical clocks have 
been used in a number of practical and 
theoretical areas. 

Languages. Inmos’s Occam has only 
one  interprocess communication mech- 
anism, synchronous message-passing, 
and nested concurrency without recur- 
sion. Thus,  programmers can easily add 
partially ordered clocks. 1 have experi- 
mentally introduced “logical timers” in 
a way consistent with Occam’s existing 
real-time timer.‘ 

So far we have assumed that mes- 
sage-passing is the  only interprocess 
communication medium. Languages that 
allow interprocess synchronization in 
other ways - for example, through ac- 
cess to  shared memory, monitors, and 
semaphores - must also incorporate 
rules for such synchronization. 

Bryan has defined partially ordered 
time for Ada.’ In  Ada ,  there a re  several 
unusual ways that tasks (processes) de- 
fine causal relationships between events. 
T h e  Ada  rendezvous causes two tasks 
to  synchronize while the  “accept” code 
is executed, after which independent 
execution continues. O n e  task can un- 
conditionally “abort” another. Unhan- 
dled exceptions may propagate to  an- 
other task. When shared variables a re  
used, the  A d a  standard guarantees syn- 
chronization only a t  certain points in 
the  computation. Bryan has formally 
defined the  causal relationships for all 
of these activities. 

Debugging distributed systems. Pro- 
grammers trying to  debug distributed 
computing systems are faced with a frus- 
trating inability to see what is happen- 
ing in the  network of processes.2 T o  
detect the occurrence of events in geo- 
graphically distant processes, a n  observ- 

e r  must receive a “notification” mes- 
sage. Because of unpredictable propa- 
gation delays, the arrival times of these 
notifications may bear no resemblance 
to  the order in which the events origi- 
nally occurred. Time-stamping the no- 
tifications a t  their source with the cur- 
rent real time is also unhelpful, even 
when the local real-time clocks are close- 
ly synchronized, because the real-time 
ordering of events may be affected by 
C P U  loads unrelated to  the computa- 
tion of interest. T h e  perceived ordering 
of events based on these time stamps 
may be merely an  artifact of relative 
processor speeds, with n o  significance 
for the  computation itself, and may be 
different each time the same computa- 
tion is performed. 

I n  the past, a popular approach to  this 
problem was t o  time-stamp events us- 
ing so-called Lamport clocks (totally 
ordered logical clocks).’ Unfortunate- 
ly, these time stamps impose on unre- 
lated concurrent events an  arbitrary 
ordering that the observer cannot dis- 
tinguish from genuine causal relation- 
ships. 

Time-stamping the event notifications 
with partially ordered time readings 
resolves all the  debugging problems. 
T h e  observer receives an accurate rep- 
resentation of the event orderings, can 
see all causal relationships. and can de-  
rive all possible totally ordered inter- 
leavings. Most importantly, the tech- 
nique greatly reduces the number of 
tests required. It is never necessary to  
perform the same computation more 
than once to  see whether different event 
orderings (interleavings) a re  possible.’ 

Partially ordered logical clocks have 
been used experimentally for the detec- 
tion of global conditions in a homoge- 
neous network of processors.x for two 
prototype implementations of a moni- 
tor for Ada  programs,’and for a proto- 
type temporal assertion checker for 
Occam.* 

Definition of global states. T h e  “hap- 
pened before” relation provides for 
straightforward definitions of normally 
subtle concepts. For instance, a “cut” of 
a distributed computation partitions the 
events performed into two sets: “past” 
and “future.” In a consistent cut, the set  
of past events C does  not violate causal- 
ity; for example, it does not contain the 
reception of a message without its trans- 
mission. This concept has a very simple 
definition in terms of partially ordered 

time.’Assume that E represents the set  
of all events performed during a com- 
putation using only asynchronous mes- 
sage-passing. Then  a consistent cut C i s  
a finite subset C c_ E such that 

‘de: E ;  c: C .  ( e  + c) ( e  E C )  

In other words, if any event e “hap- 
pened before” an event c in the cut set 
C. then e must also be in the  cut set. 

This is an important concept in the  
theory of distributed error recovery and 
rollback. Consider a distributed system 
consisting of a static number of non- 
nested processes, each of which peri- 
odically stores a “snapshot” of its local 
state (including the  contents of mes- 
sage queues). If a set of snapshot events 
S c C. one from each process, forms 
the leading edge of a consistent cut C, 
that is. 

vs: s: c: c ‘ 1 ( s  + c) 

then these local states form a valid glo- 
bal state from which an  erroneous com- 
putation may be restarted. 

Partially ordered time has also been 
used in the analysis of other global state 
problems, for instance, characterization 
of distributed deadlocks.’ 

Concurrency measures. A concurren- 
cy measure is a software metric that 
objectively assesses how concurrent a 
computation is. I t  measures the  struc- 
ture of the computation graph, rather 
than elapsed execution time. Partially 
ordered logical clocks have proved im- 
portant in the definition and proposed 
implementations of such measures. 

O n e  of the simplest such measures, 
known as w. counts the number of con- 
current pairs of events that  occurred 
during the computation and divides this 
by the total number of pairs of events 
between processes.”) For  a given com- 
putation C,  consisting of two or more  
nonnested processes, the measure is 

where the relation “CO” is true between 
two distinct events if and only if they 
cannot causally affect one  another,  that  
is, 
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Charron-Bost“’ has defined a more 
discerning measure, m, using consis- 
tent cuts: 

m(C) = -E+ 
P <  - P  

T h e  value p represents the number of 
consistent cuts that  occurred during the 
computation, ,U’ is the number of con- 
sistent cuts that  would b e  possible if the 
computation consisted of only one  pro- 
cess, and p‘ is the  number of consistent 
cuts possible if causal relationships due  
to  interprocess communication a re  ig- 
nored. 

Because both o and m are  defined in 
terms of the “happened before” rela- 
tion, they can both b e  implemented by 
time-stamping all events with partially 
ordered time readings for postmortem 
analysis. Elsewhere I have investigated 
m e a s u r e s  tha t  allow fo r  process-  
nesting o r  can be evaluated efficiently 
at runtime.” 

Enforcement of causal ordering. The 
“causal ordering” abstraction, which 
prevents asynchronous message over- 
taking, has applications in several ar- 
eas.” For management of replicated 
data in distributed databases. it can be 
used with a “write-enabling” token 
model to  ensure that updates a re  ap- 
plied in the same order  at all sites. 
When monitoring activity in distribut- 
ed systems, it ensures that all observers 
receive notification of events in the 
same order. Also, in the allocation of 
shared resources, causal ordering guar- 
antees that servers honor requests in 
the order that  they were made, rather 
than received. 

The  rule required for enforcement of 
causal ordering is easily defined in terms 
of “happened before.”I2 For  two send 
events e, and f,, where both messages 
a re  received by process p L  as events g, 
and h,,  respectively, we need to  guar- 
antee that 

(e,  -j f,) * (gi, -3 hk) 

A possible implementation of this 
rule using vector time (for computa- 
tions without process-nesting) involves 
piggybacking control information on 
each outgoing message m, so the desti- 
nation process knows whether there 
a re  other messages in transit that  it 
must receive before it can accept m.” 
T h e  piggybacked information consists 
of a bounded number of destination- 

sitehector-time pairs representing mes- 
sages known to  be in transit to  the des- 
tination process. A destination process 
must not accept a message until all the 
message’s time stamps “happened be- 
fore” the current local time. 

artially ordered logical clocks are 
a fundamental  new approach to 
the analysis and  control of com- 

puta t ions  per formed by distributed 
computing systems. They accurately 
reflect causality and  are  unperturbed 
by the  random influences of system load, 
relative processor speeds, and different 
system configurations. In  testing and 
debugging, they greatly reduce the num- 
ber of tests required by simultaneously 
presenting any observer with all possi- 
ble interleavings of events. Both their 
theory and practical application a re  
now well established, but we will see 
further progress in both areas in the 
near future. W 
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