
Logical Time in Distributed
Computing Systems

Colin Fidge, University of Queensland

nlike conventional sequential programs, the computations performed by
distributed computing systems d o not yield a linear sequence of events.
The interrelationships between the events performed in a distributed

system inherently define a partial ordering-genuinely concurrent events have no
influence o n one another.

In the past, designers have typically used a simplified view of distributed
computations, imposing an interleaved total ordering o n the events performed.
However, new computing concepts now let us use the full partial ordering of events
as defined by their causal relationships, that is, the ability of one event to directly.
or transitively, affect another. In this article I define this partial ordering, describe
its generalized and practical implementations in terms of partially ordered logical
clocks, and summarize some current applications of the new technology.

Definition

For a system using both asynchronous and synchronous message-passing and
process-nesting, the causal relationships between events in a distributed compu-
tation a re captured as follows

The relation “happened before,” denoted +, is the smallest relation satisfying
the six conditions listed below It is an irreflexive, transitive relation among the
events performed during a given computation. A n event is a uniquely identified
runtime instance of an atomic action of interest, and a computation is a particular
run or execution of the distributed computing system A computation consists of
one or more possibly nested process instances, which are uniquely identified
runtime instantiations of a particular process definition

Condition 1. Sequential behavior If events e a n d f o c c u r in the same process
instance p , a n d f occurs a f te r e , then e + f

Condition 2 Process creation I f event e a n d process instance q occur in
process instance p , e v e n t f o c c u r s in q, a n d q begins a f te r e , then e +f

Condition 3 Process termination If event e a n d process instance q occur
in process instance p , event f occurs in q, a n d e occurs a f te r q terminates.
t h e n f 4 e

Ordered

logical clocks can
provide a decentralized

distributed computing
systems, which lack a

common time base.

definition of time for

28 001X-Y1h2/91/0800-0028%01 00 CC 1991 IEEE COMPUTER

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

Condition 4: Synchronous (unbuf-
fered) message-passing. If event e is a
synchronous input (output) and event
f is the corresponding output (input),
and there is an event g such that e -+ g,
then f + g. If there is an event h such
that h + e, then h -+ f.

Condition 5: Asynchronous (buf f -
ered) message-passing. If event e is an
asynchronous send, and event f is the
corresponding receive, then e -+ f .

Condition 6: Transitivity. I f e + f
and f -+ g, then e + g .

An event e “occurs in” a process
instance p if p executes e. A process
instance q occurs in a process instance
p if q is a subprocess of p . “After” is
used only when referring to actions
that occur within a single process in-
stance. Each process consists of a se-
quence of actions.’

Partially ordered
logical clocks

Figure 1 shows a computation per-
formed by a distributed program P.
Shortly after it starts executing, P
spawns two process instances Q and R.
All three processes perform a number
of events. Some are actions internal to
a process, such as E, or a re communica-
tion actions such as G. (For clarity I
treat process creation and termination
as special cases, although it is possible
t o consider these actions as synchro-
nizing events.) After performing event
H, process R creates two processes S
and T, and suspends itself during the
lifetime of its offspring. Processes P
and S communicate via synchronous
message-passing; event F outputs a
message that is simultaneously input
by event I. Processes P and Q commu-
nicate via asynchronous message-pass-
ing; event G denotes the sending of a
message later received by event C.

After processes S and T terminate.
process R resumes execution and per-
forms event L. After processes Q and
R terminate, the main program, pro-
cess P, performs a final event M, and
the computation ends.

Partially ordered logical clocks char-
acterize all interrelationships between
these events. In Figure 1 the annota-
tion a t each event shows the partially
ordered time a t that point in the com-

R.,

F

Process Q

Process P

Figure 1. A distributed computation. Expressions in braces show the partially
ordered time at each event. Solid arrows represent flow control; dotted arrows
show interprocess communication.

putation. I explain the maintenance and
use of this information below.

Notation. Because the time readings
must b e partially ordered, a single inte-
ger o r real value is inadequate as a da ta
structure. Assume tha tp , denotes a pro-
cess instance uniquely identified by i.
We can represent a partially ordered
time reading made by p , with a set of
pairs

Here each pair consists of a process
instance identifier j and a numerical
“counter” value n, representing the val-
ue of the counter inp, as perceived byp,.
Each process thus maintains knowledge
of the counters in all other processes of
which it has heard. Process instances

not represented in the set have the de-
fault counter value 0.

Assume that e, represents a unique
event e performed by process instance
p , , and t?, is the time stamp attached t o
some permanent record of the execu-
tion of this event. Then t?,G) is the value
of the counter for p , in this time stamp.

For example. in Figure 1.

is the time when process P performed
event G. (Because event names a re
unique in Figure 1, I omit the process
identifier subscripts: G is equivalent to
Gp.) From this we can determine the
“local” counter value for process P a t
that time,

t,,(P) = 4

August 1991 29

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

and the last known value for process S,

t t i(S) = 1

When it performed event G, process P
had received no information from pro-
cess Q, hence

tti(Q) = 0

A handy function in the following
definitions is max. Given one or more
partially ordered time readings, max
returns a time reading in which every
counter is set t o the maximum of all
corresponding values in the arguments
presented to it, for example,

max({(i ,2) , 0‘,1), (k,3)1, {(i ,4), (k1)I)
= {(i ,4), 0’JL (k,3)1

The counter for pl has the default value
0 in the second argument t o max above.

Rules. A computation can maintain a
partially ordered logical clock using nine
rules.* For the rules below to apply,
each process instance p , created during
the lifetime of the computation (includ-
ing the outer-level main program) must
maintain an auxiliary variable c, to hold
the current partially ordered time as
perceived by p,.

Rule A: Initialization. When the pro-
gram begins execution, the time is ini-
tialized to the empty set, that is, cm := [I ,
where m is the process instance identi-
fier associated with the main program.

Since zero-valued counters a re implicit,
[] is equivalent to the infinite set [(i,O),
G,O), ...I for every possible process iden-
tifier.

Rule B: Ticking. Whenever a pro-
cess instance p , performs an event, it
increments c , (i) a t least once.

For instance, in performing event D,
process Q increments its own counter
from 2 t o 3.

In Figure 1 each counter has been
incremented exactly once for each event
performed. However, the rules a re val-
id for any number of “ticks,” as long as
the counters never decrease.

Rule C: Monotonically increasing
counters. No counter in any c, is ever
decremented.

Rule D: Process creation. Whenever
a process instance p, creates a set of

Because the time readings
must be partially ordered, a
single integer or real value

is inadequate as a data
structure.

process instances p ,,..., p i , they each in-
herit the current t ime from p,, that is,
Vx:b ... 11 . c, := e,.

Thus, when process R spawns process-
es S and T , they both learn that the
counters for P and R have value 1. They
also create pairs for themselves the first
time they each perform an event (K and
1).

Rule E: Process termination. When-
ever a set of process instances p,, . . . ,pi
terminates, the parent process instance
p, merges all the children’s logical clocks
by maximizing the counter values, that
is, c, := max(c,,c ,,..., e,).

In this way process R learns of all activ-
ity known to its offspring S and T when
they te rmina te (including u p d a t e d
knowledge of process P). The main pro-
gram P (which cannot terminate until
all processes it has created have termi-
nated) similarly learns from the demise
of Q and R.

Rule F: Synchronous events. Dur-
ing a synchronizing event, all process
instances involved @,,...,PO maximize
their local clocks using the counters
from every other participating process
ins tance , t ha t is , V x : [j ... l } . c, :=
max(c,, ..., e,). A computation applies this
rule only after any increments required
by rule B.

Thus, during the synchronous message-
passing action represented by events F
and I, process S learns of the time in
process P and vice versa: Logical time
information is exchanged in both direc-
tions (hence the double-headed arrow
in Figure 1). This happens because the
synchronization resulting from unbuf-
fered message-passing is symmetric:
Both sender and receiver block. Figure
1 shows only a biparty interaction, but

rule F allows for any number of syn-
chronizing processes.

A s y n c h r o n o u s communica t ion is
asymmetric (only receivers block) and
hence requires two rules:

Rule G: Sending. Whenever a pro-
cess instance p , sends a message, that
message carries the current value of c,.
A process applies this rule only after
any increments required by rule B.

Rule H: Receiving. Upon receiving a
message, the receiving process instance
p, maximizes its counter values using
those received in the piggybacked t ime
stamp c,,,,,,,~~, that is, c, := max(cl, c,~,,,,,~).

Thus event C allows process Q t o learn
of those events known to process P when
event G was performed. Although Fig-
ure 1 shows only a biparty communica-
tion, these rules also apply t o broadcast
messages.

T h e logical clock information is al-
ways piggybacked onto existing com-
munication pathways and thus must re-
flect the structure of the computation.

Rule I: Time-stamping. T h e time
stamp re,, associated with the execution
of event e, by process instance p z , is the
value of c, immediately following the
application of rules B through H.

Finally, with these rules in place, we
can determine the “happened before”
relations using the comparison proper-
ty of such time stamps:

Comparison property. Given two
time stamps t?, and t6, event e, happened
before eventf, if and only if t6 has knowl-
edge of processp, as recent as the execu-
tion of e,, but not vice versa, that is,

W e need t o compare only two pairs
from the sets to establish whether there
is a causal relationship between the two
events. The first comparison is true if
and only if e, can causally affect 6. The
second comparison precludes reflexivi-
ty because it would be nonsensical to
say that an event happened before it-
self.’ (Because synchronously commu-
nicating processes may independently
time-stamp their part of a shared event,
as d o F and I in Figure 1, it may not
always be easy t o directly test e, f f,.)

Elsewhere I have formally shown that

30 C O M P U T E R

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

these rules a re sufficient t o implement
the “happened before” relatiom2 T h e
rules a re robust enough for asynchro-
nous message “overtaking” (that is, non-
F I F O queuing of messages destined for
a particular process instance). T h e rules
also preserve the equivalence between
asynchronous message-passing and syn-
chronous message-passing with an in-
tervening buffer process, and between
synchronous message-passing and a sin-
gle event shared among the communi-
cating processes.

A s Figure 2 shows, substituting the
appropriate counter values from the time
stamps into the formula from the com-
parison property establishes the rela-
tionships defined by the computation in
Figure 1. T h e final category in Figure 2
shows the principal advantage of par-
tially ordered logical clocks over previ-
ous time-stamping methods.’ Where no
causa l re la t ionship exists be tween
events, no arbitrary ordering is imposed
on them. Thus we can tell, for instance,
that events K and J could occur in either
order, o r a t exactly the same time. Even
though Figure 1 suggests that K oc-
curred before J in real time (taking a
line drawn horizontally through the di-
agram to represent an instant in global
real time), the logical behavior of the
computation does not enforce this tem-
poral ordering. A slightly different in-
terleaving of the same computation may
result in J occurring before K. (Think of
thedots inFigure 1 as beads free toslide
u p and down the time lines, as long as
they d o not violate causality by, for
example, causing communication arrows
t o point backward.)

Optimizations

In their full generality, as described
in the previous section, partially ordered
logical clocks may b e impractically ex-
pensive for long-lived computations. For
instance, the rules placed no upper bound
on the size of the set of pairs, and their
number was limited only by the number
of process instances created a t runtime.
Nevertheless, several optimizations a re
possible, depending on the application
environment in which the clocks will be
used.

Static number of processes. Where
there is no process-nesting, and the sys-
tem knows the number of processes to
be created a t compile time, the “set of

Tests for e -+ f where

e and f a r e the same event:
(2 < 2) A (2 4 2) 3 , (c + c)

e and f are different events in the same process:
(1 5 3) ~ (1 < 3) 3 B + D
(2 9 1) A (2 d 1) 3 T (C + B)

e and f are in different processes with a n intervening communication
action:

(2 < 4) ~ (0 < 3) 3 E - + D
(2 9 0) ~ (3 d 2) 3 , (J + E)

e is in a subprocess of the process containing f o r vice versa:
(1 5 1) ~ (0 < 2) 3 H + J
(5 9 3) ~ (2 d 1) 3 - I (M + I)

e a n d f a r e different parts of a synchronous communication event:
(3 5 3) ~ (1 d 1) 3 , (F + I)
(1 2 1) A (3 d 3) 3 ~ (1 + F)

e a n d f a r e “potentially concurrent”; that is, there is no causal relationship
between them:

(2 g O) A (1 < 2) 3 - I (C + J)
(2 4 1) A (0 < 2) 3 y (J + C)
(1 9 0) A (0 < 2) * y (K + J)
(2 $ 0) A (0 < 1) ;j , (J + K)

Figure 2. Some “happened before” relationships defined between two arbitrary
events e andfby the time stamps in Figure 1.

pairs” da ta structure is unnecessary.
Instead, each process can use an array
of counters, with one element reserved
per process.z

This frequently used optimization is
known as “vector time”) because each
clock reading is a vector (array) of
counter values. It has the obvious ad-
vantage of placing a n upper bound on
the storage requirements for the auxil-
iary clock variables. In a formal proof,
Charron-Bost demonstrated that a vec-
tor of length n is minimal for n static
p r o c e ~ s e s . ~

The vector-time optimization can be
applied to languages with nested con-
currency if they d o not allow recursive
process definitions.’ This restriction
means that only one instance of each
static process definition can execute a t
any given time. T h e system can deter-
mine from the source code the maxi-
mum number of runtime process in-
stances simultaneously executing and
reserve only one vector element for each.
Every time a particular process defini-
tion is instantiated. it uses the same

element in the logical clock vector, be-
cause no other copies of itself a re cur-
rently running.

Comparisons known a priori. So far
we have assumed that the computation
maintains counters for every process
instance. However, if we know in ad-
vance the processes that contain the
events we wish t o study, then we need t o
keep counter values only for those pro-
 cesse^.^ Nevertheless, other “uninter-
esting” processes must still maintain a n
auxiliary clock variable and transfer in-
formation a t communication events.
Otherwise, the partial ordering may fail
to correctly reflect transitive interpro-
cess dependences. All processes and all
synchronizing actions in a computation
must actively participate.’

Only new values piggybacked. When
the number of processes in the vector-
time model is large, the transmission of
the clock arrays during message-pass-
ing represents a significant overhead.
In such cases each process can main-

August 1991 31

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

tain, via two further auxiliary arrays.
the value of the ‘‘local’’ counter when a
vector was last sent to each other pro-
cess, and when each counter for other
processes was last updated. Using this
information, the process can piggyback
on an outgoing message only those
counter values that have been modified
since the last communication with the
target process, assuming message over-
taking is precluded.6

Implementations and
applications

Partially ordered logical clocks have
been used in a number of practical and
theoretical areas.

Languages. Inmos’s Occam has only
one interprocess communication mech-
anism, synchronous message-passing,
and nested concurrency without recur-
sion. Thus, programmers can easily add
partially ordered clocks. 1 have experi-
mentally introduced “logical timers” in
a way consistent with Occam’s existing
real-time timer.‘

So far we have assumed that mes-
sage-passing is the only interprocess
communication medium. Languages that
allow interprocess synchronization in
other ways - for example, through ac-
cess to shared memory, monitors, and
semaphores - must also incorporate
rules for such synchronization.

Bryan has defined partially ordered
time for Ada.’ In Ada , there a re several
unusual ways that tasks (processes) de-
fine causal relationships between events.
T h e Ada rendezvous causes two tasks
to synchronize while the “accept” code
is executed, after which independent
execution continues. O n e task can un-
conditionally “abort” another. Unhan-
dled exceptions may propagate to an-
other task. When shared variables a re
used, the A d a standard guarantees syn-
chronization only a t certain points in
the computation. Bryan has formally
defined the causal relationships for all
of these activities.

Debugging distributed systems. Pro-
grammers trying to debug distributed
computing systems are faced with a frus-
trating inability to see what is happen-
ing in the network of processes.2 T o
detect the occurrence of events in geo-
graphically distant processes, a n observ-

e r must receive a “notification” mes-
sage. Because of unpredictable propa-
gation delays, the arrival times of these
notifications may bear no resemblance
to the order in which the events origi-
nally occurred. Time-stamping the no-
tifications a t their source with the cur-
rent real time is also unhelpful, even
when the local real-time clocks are close-
ly synchronized, because the real-time
ordering of events may be affected by
C P U loads unrelated to the computa-
tion of interest. T h e perceived ordering
of events based on these time stamps
may be merely an artifact of relative
processor speeds, with n o significance
for the computation itself, and may be
different each time the same computa-
tion is performed.

I n the past, a popular approach to this
problem was t o time-stamp events us-
ing so-called Lamport clocks (totally
ordered logical clocks).’ Unfortunate-
ly, these time stamps impose on unre-
lated concurrent events an arbitrary
ordering that the observer cannot dis-
tinguish from genuine causal relation-
ships.

Time-stamping the event notifications
with partially ordered time readings
resolves all the debugging problems.
T h e observer receives an accurate rep-
resentation of the event orderings, can
see all causal relationships. and can de-
rive all possible totally ordered inter-
leavings. Most importantly, the tech-
nique greatly reduces the number of
tests required. It is never necessary to
perform the same computation more
than once to see whether different event
orderings (interleavings) a re possible.’

Partially ordered logical clocks have
been used experimentally for the detec-
tion of global conditions in a homoge-
neous network of processors.x for two
prototype implementations of a moni-
tor for Ada programs,’and for a proto-
type temporal assertion checker for
Occam.*

Definition of global states. T h e “hap-
pened before” relation provides for
straightforward definitions of normally
subtle concepts. For instance, a “cut” of
a distributed computation partitions the
events performed into two sets: “past”
and “future.” In a consistent cut, the set
of past events C does not violate causal-
ity; for example, it does not contain the
reception of a message without its trans-
mission. This concept has a very simple
definition in terms of partially ordered

time.’Assume that E represents the set
of all events performed during a com-
putation using only asynchronous mes-
sage-passing. Then a consistent cut C i s
a finite subset C c_ E such that

‘de: E ; c: C . (e + c) (e E C)

In other words, if any event e “hap-
pened before” an event c in the cut set
C. then e must also be in the cut set.

This is an important concept in the
theory of distributed error recovery and
rollback. Consider a distributed system
consisting of a static number of non-
nested processes, each of which peri-
odically stores a “snapshot” of its local
state (including the contents of mes-
sage queues). If a set of snapshot events
S c C. one from each process, forms
the leading edge of a consistent cut C,
that is.

vs: s: c: c ‘ 1 (s + c)

then these local states form a valid glo-
bal state from which an erroneous com-
putation may be restarted.

Partially ordered time has also been
used in the analysis of other global state
problems, for instance, characterization
of distributed deadlocks.’

Concurrency measures. A concurren-
cy measure is a software metric that
objectively assesses how concurrent a
computation is. I t measures the struc-
ture of the computation graph, rather
than elapsed execution time. Partially
ordered logical clocks have proved im-
portant in the definition and proposed
implementations of such measures.

O n e of the simplest such measures,
known as w. counts the number of con-
current pairs of events that occurred
during the computation and divides this
by the total number of pairs of events
between processes.”) For a given com-
putation C, consisting of two or more
nonnested processes, the measure is

where the relation “CO” is true between
two distinct events if and only if they
cannot causally affect one another, that
is,

32 C O M P U T E R

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

Charron-Bost“’ has defined a more
discerning measure, m, using consis-
tent cuts:

m(C) = -E+
P < - P

T h e value p represents the number of
consistent cuts that occurred during the
computation, ,U’ is the number of con-
sistent cuts that would b e possible if the
computation consisted of only one pro-
cess, and p‘ is the number of consistent
cuts possible if causal relationships due
to interprocess communication a re ig-
nored.

Because both o and m are defined in
terms of the “happened before” rela-
tion, they can both b e implemented by
time-stamping all events with partially
ordered time readings for postmortem
analysis. Elsewhere I have investigated
m e a s u r e s tha t allow fo r process-
nesting o r can be evaluated efficiently
at runtime.”

Enforcement of causal ordering. The
“causal ordering” abstraction, which
prevents asynchronous message over-
taking, has applications in several ar-
eas.” For management of replicated
data in distributed databases. it can be
used with a “write-enabling” token
model to ensure that updates a re ap-
plied in the same order at all sites.
When monitoring activity in distribut-
ed systems, it ensures that all observers
receive notification of events in the
same order. Also, in the allocation of
shared resources, causal ordering guar-
antees that servers honor requests in
the order that they were made, rather
than received.

The rule required for enforcement of
causal ordering is easily defined in terms
of “happened before.”I2 For two send
events e, and f,, where both messages
a re received by process p L as events g,
and h,, respectively, we need to guar-
antee that

(e, -j f,) * (gi, -3 hk)

A possible implementation of this
rule using vector time (for computa-
tions without process-nesting) involves
piggybacking control information on
each outgoing message m, so the desti-
nation process knows whether there
a re other messages in transit that it
must receive before it can accept m.”
T h e piggybacked information consists
of a bounded number of destination-

sitehector-time pairs representing mes-
sages known to be in transit to the des-
tination process. A destination process
must not accept a message until all the
message’s time stamps “happened be-
fore” the current local time.

artially ordered logical clocks are
a fundamental new approach to
the analysis and control of com-

puta t ions per formed by distributed
computing systems. They accurately
reflect causality and are unperturbed
by the random influences of system load,
relative processor speeds, and different
system configurations. In testing and
debugging, they greatly reduce the num-
ber of tests required by simultaneously
presenting any observer with all possi-
ble interleavings of events. Both their
theory and practical application a re
now well established, but we will see
further progress in both areas in the
near future. W

Acknowledgments
Thanks to Friedemann Mattcrn, Michel

Raynal. Bernadette Charron-Bost. Doug Bry-
an. Dieter Haban. Sigurd Meldal. and Mu-
kesh Singhal for keeping me abreast of their
work on partially ordered clocks. Special
thanks to Doug Bryan, Andrew Lister, and
the anonymous referees for their numerous
helpful comments on drafts of this article.

This work was supported by an Australian
postdoctoral research fellowship and an Aus-
tralian Telecommunications and Electronics
Research Board project grant.

References

1. L. Lamport, “Time. Clocks. and the Or-
dering of Events in a Distributed Sys-
tem.” Comm. A C M . Vol. 21. No. 7, July
1978. pp. 558-565.

2. C.J. Fidge. Dynamic Analysis of Event
Orderings in Message-Passing Systems.
doctoral dissertation, Australian Nat’l
Univ., 1989.

3. F. Mattern, “Virtual Time and Global
States of Distributed Systems,” in Par-
allel and Distributed A lgor i thms , M.
Cosnard and P. Quinton. eds., North-
Holland, Amsterdam, 1989, pp. 215-226.

4. B. Charron-Bost, “Concerning the Size
of Clocks,” Tech. Report 569. Labo-
ratory of Research in Information Sci-

ence. University of Paris-South, Paris,
1990.

5. S. Meldal. ”Supporting Architecture
Mappings in Concurrent Systems De-
sign.” Proc.. Fifth A itstraliati Software Eng.
C o t i t . IREE. Sydney. 1990, pp. 207-212.

6. M. Singhal and A. Kshemkalyani. “An
Efficicnt Implementation of Vector
Clocks,“ tech. report, Dept. of Computer
and Information Science, Ohio State
Univ.. Columbus, Ohio, 1990.

7. D. Bryan, “An Algebraic Specification
of the Partial Orders Generated by Con-
current Ada Computations.” Proc. Tri-
Ada . ACM Press, New York, 1989. pp.
225241.

8. D. Haban and W. Weigel. “Global Events
and Global Breakpoints in Distributed
Systems.’‘ Proc. 2lst Hawaii Int’l Corif
System Sciences, Vul. I I . IEEE Comput-
er Society Press, Order No. 842 (micro-
fiche only). 1989. pp. 166-175.

9. A.D. Kshemkalyani and M. Singhal.
“Characterization of Distributed Dead-
locks.“ Tech. Report OSU-CISRC-6I90-
TRlS. Computer and Information Sci-
ence Research Center, Ohio State Univ..
Columbus, Ohio. 1990.

I O . B. Charron-Bost. “Combinatorics and
Geometry of Consistent Cuts: Applica-
tion to Concurrency Theory,” in Disrrih-
tired A1gorithni.s. J.-C. Bermond and M.
Raynal. eds.. Lecture Notes in Cornpiiter
Science, Vol. 392. Springer-Vcrlag. Bcr-
lin. 1989.

11. C.J. Fidge. “A Simple Run-Time Con-
currency Mcasurc.“ in The Trarispirter iri

Arisiralasia (A TOUC-S), T. Bossomaier.
T. Hintz. and J . Hulskamp. eds.. 10s
Press. Amsterdam, 1990, pp. 92.101.

12. M. Raynal and A. Schiper, “The Causal
Ordering Abstraction and a Simple Way
to Implement I t . “ Tech. Report 1132.
INRIA. Paris. 1989.

Colin Fidge is a postdoctoral fellow with the
Key Centre for Software Technology. Uni-
versity of Queensland, where he researches
techniques for the specification and devel-
opment of distributed real-time systems. He
has also worked in the Software Engineering
Research Section of the Telecom Australia
Research Laboratories.

Fidge completed his PhD in computer sci-
ence at the Australian National University
in 1989.

August 1991 33

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on November 13,2023 at 14:52:01 UTC from IEEE Xplore. Restrictions apply.

