
Server Process /rsg/index#p

/rsg/index#p, where output is the location of the newly created resource with id. In other

words, some transitions have return values beyond a HTTP status code.

The process /rsg/index#p is a singleton process, that is, has a state (as a single occurrence).

id++ for each newly created occurrence. Infinite states (!) if we do not restrict the range of

id.

Process /rsg/index#p is related to /ready/index#p, /set/index#p and /go/index#p. Or rather:

/ready/{id}#p, /set/{id}#p, /go/{id}#p?

CREATE-POST-rsg-index creates new occurrences of /rsg/{id}#p, including subs.

Is the server process /rsg/index#p analogous to CREATE-PUT server fragments (both are

describing resource lifecycle)? But then transition from NOT-EXISTS-RSG-id to EXISTS-

RSG-id.

The request RPC-rsg-index wipes out the existing occurrences /rsg/{id}#o (and

subordinate resources /ready/{id}#o, /set/{id}#o, /go/{id}#o), even those with a 410 Gone

tombstone.

• Input: -

• Output: id via URI template in location header

INITIAL-0

/ id := 0;

INITIAL-id

+CREATE-POST /rsg/index
-201 Location: /rsg/{id}

/ id := id + 1;

+RPC /rsg/index
-200

/ id := 0;

+CREATE-POST /rsg/index
-201 Location: /rsg/{id}

/ id := id + 1;

The process representation contains the name of the interaction, e.g., CREATE-POST-rsg-

index-201.

Occurrence /rsg/index#o

The occurrence representation include the affordance (with name). The affordance

contains concrete requests/response, with concrete target URI and location header URI.



t = 0

Form POST /rsg/index, 201 (named CREATE-POST-rsg-index-201)

t = 1

Form POST /rsg/index, 201 (named CREATE-POST-rsg-index-201)

Form POST /rsg/index, 200 (named RPC-rsg-index-200) - probably needs a tweak

because of clash with POST on URI /rsg/index


